Please wait a minute...
浙江大学学报(工学版)
材料工程     
基于沸石咪唑酯的反蛋白石光子晶体制备研究
杨璨1, 高丰誉1, 陈鹭剑1,2, 崔元靖2, 钱国栋2
1.厦门大学 电子工程系,福建 厦门 361005; 2. 浙江大学 硅材料国家重点实验室,浙江 杭州 310027)
Fabrication of inverted opal photonic crystal based on zeolite imidazolate frameworks
YANG Can1, GAO Feng yu1, CHEN Lu jian1,2, CUI Yuan jing2, QIAN Guo dong2
1.Department of Electronic Engineering, Xiamen University, Xiamen 361005, China; 2. State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1183 KB)   HTML
摘要:

通过将沸石咪唑酯骨架材料(ZIFs)与反蛋白石光子晶体相结合,制备新型反蛋白石光子晶体.以二氧化硅(SiO2)反蛋白石光子晶体与聚苯乙烯(PS)反蛋白石光子晶体作为载体,通过在表面修饰羧基官能团的方式,使ZIF 8中的锌离子与反蛋白石光子晶体表面的羧基配位连接,成功地在2种反蛋白石光子晶体表面上生长了ZIF 8薄膜,制备了2种复合型反蛋白石光子晶体.结果表明,ZIF 8薄膜保持了ZIF 8原有的晶体特性,在反蛋白石光子晶体上覆盖均匀致密,表现出了较好的结合力.复合型反蛋白石光子晶体的光子带隙与原始的反蛋白石光子晶体相比产生了移动,与预测相符.

Abstract:

New composite inverted opal photonic crystals were fabricated combining zeolite imidazolate frameworks (ZIFs) with inverted opal photonic crystals. Silicon dioxide (SiO2) inverted opal photonic crystals and polystyrene (PS) inverted opal photonic crystals were used as support, and their surface was modified with carboxyl groups. The carboxyl groups prompt the adhesive of ZIF 8 by coordinating to the apical sites of the Zn2 units, and make ZIF 8 films grow on the two kinds of inverted opal photonic crystals successfully. Results showed that ZIF 8 films maintained the crystalline nature of ZIF 8. They were of nice connection with the inverted photonic crystals and the growth of which was uniform and dense. The composite inverted opal photonic crystals had a shift in photonic band gaps comparing to the original inverted photonic crystal, which accorded well with the predict results.

出版日期: 2016-04-01
:  O 648  
基金资助:

中央高校基本科研业务费专项资金资助项目(20720140518);浙江大学硅材料国家重点实验室开放课题资助项目(SKL2015 02).

通讯作者: 陈鹭剑,男,副教授.ORCID: 0000 0002 4156 019X.     E-mail: lujianchen@xmu.edu.cn
作者简介: 杨璨(1989—),男,硕士生,从事有机无机杂化光功能材料的研究.ORCID: 0000 0003 1607 0540. E-mail: 150146021@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

杨璨, 高丰誉, 陈鹭剑, 崔元靖, 钱国栋. 基于沸石咪唑酯的反蛋白石光子晶体制备研究[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.04.027.

YANG Can, GAO Feng yu, CHEN Lu jian, CUI Yuan jing, QIAN Guo dong. Fabrication of inverted opal photonic crystal based on zeolite imidazolate frameworks. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.04.027.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.04.027        http://www.zjujournals.com/eng/CN/Y2016/V50/I4/799

[1] ROWSELL J L C, YAGHI O M. Metal organic frameworks: a new class of porous materials [J]. Microporous and Mesoporous Materials, 2004, 73(1): 314.
[2] FERY G. Hybrid porous solids: past, present, future [J]. Chemical Society Reviews, 2008, 37(1): 191-214.
[3] FARHA O K, HUPP J T. Rational design, synthesis, purification, and activation of metal organic framework materials [J]. Accounts of Chemical Research, 2010,43(8): 1166-1175.
[4] MURRAY L J, DINC M, LONG J R. Hydrogen storage in metal organic frameworks [J]. Chemical Society Reviews, 2009, 38(5): 1294-1314.
[5] LI J R, KUPPLER R J, ZHOU H C. Selective gas adsorption and separation in metal organic frameworks [J]. Chemical Society Reviews, 2009, 38(5): 1477-1507.
[6] LEE J Y, FARHA O K, ROBERTS J, et al. Metal organic framework materials as catalysts [J]. Chemical Society Reviews, 2009, 38(5): 1450-1459.
[7] MA L Q, ABNEY C, LIN W B. Enantioselective catalysis with homochiral metal organic frameworks [J]. Chemical Society Reviews, 2009, 38(5): 1248-1256.
[8] CHEN B L, YANG Y, ZAPATA F, et al. Luminescent open metal sites within a metal organic framework for sensing small molecules [J]. Advanced Materials, 2007, 19(13): 1693-1696.
[9] WONG K L, LAW G L, YANG Y Y, et al. A highly porous luminescent terbium organic framework forreversible anion sensing [J]. Advanced Materials, 2006, 18(8): 1051-1054.
[10] HARBUZARU B V, CORMA A, REY F, et al. A miniaturized linear pH sensor based on a highly photoluminescent self assembled Europium (III) metal organic framework [J]. Angew. Angewandte Chemie International Edition, 2009, 48(35): 6476-6479.
[11] BANERJEE R, PHAN A, WANG B, et al. High throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture [J]. Science, 2008, 319(5865): 939-943.
[12] MORRIS W, DOONAN C J, FURUKAWA H, et al. Crystals as molecules: postsynthesis covalent functionalization of zeolitic imidazolate frameworks [J]. Journal of the American Chemical Society, 2008, 130(38): 12626-12627.
[13] KRENO L E, LEONG K, FARHA O K, et al. Metal organic framework materials as chemical sensors [J]. Chemical Reviews, 2012, 112(2): 1105-1125.
[14] LU G, FARHA O K, KRENO L E, et al. Fabrication of metal organic framework containing silica colloidal crystals for vapor sensing [J]. Advanced Materials, 2011, 23(38): 4449-4452.
[15] LU G, HUPP J T. Metal organic frameworks as sensors: a ZIF 8 based Fabry Pérot device as a selective sensor for chemical vapors and gases [J]. Journal of the American Chemical Society, 2010, 132(23):7832-7833.
[16] RANFT A, NIEKIEL F, PAVLICHENKO I, et al. Tandem MOF based photonic crystals for enhanced analyte specific optical detection [J]. Chemistry of Materials, 2015, 27(6): 1961-1970.
[17] HINTERHOLZINGER F M, RANFT A, FECKL J M, et al. One dimensional metal organic framework photonic crystals used as platforms for vapor sorption [J]. Journal of Materials Chemistry, 2012, 22(20): 10356-10362.
[18] WU Y N, LI F, XU Y, et al. Facile fabrication of photonic MOF films through stepwise deposition on a colloid crystal substrate [J]. Chemical Communications, 2011, 47(36): 10094-10096.
[19] PARK K S, NI Z, CT A P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks [J]. Proceeding of National Academy of Sciences of the United States of America, 2006,103(27): 10186-10191.
[20] FAIREN JIMENEZ D, MOGGACH S A, WHARMBY M T. Opening the gate: framework flexibility in ZIF 8 explored by experiments and simulations [J]. Journal of the American Chemical Society, 2011,133(23): 8900-8902.
[21] STBER W, FINK A, BOHN E. Controlled growth of monodisperse silica spheres in the micron size range [J]. Journal of Colloid and Interface Science, 1968,26(1): 62-69.
[22] HERMES S, SCHRDER F, CHELMOWSKI R, et al. Selective nucleation and growth of metal organic open framework thin films on patterned COOH/CF3 terminated self assembled monolayers on Au (111) [J]. Journal of the American Chemical Society, 2005, 127(40): 13744-13745.
[23] HERMES S, ZACHER D, BAUNEMANN A, et al. Selective growth and MOCVD loading of small single crystals of MOF 5 at alumina and silica surfaces modified with organic self assembled monolayers [J]. Chemistry of materials, 2007, 19(9): 2168-2173.
[24] GASCON J, AGUADO S, KAPTEIJN F. Manufacture of dense coatings of Cu3(BTC)2 (HKUST 1) on α alumina [J]. Microporous and Mesoporous Materials, 2008, 113(1): 132-138.
[25] YAN Q F, ZHOU Z C, ZHAO X S. Inward growing self assembly of colloidal crystal films on horizontal substrates [J]. Langmuir, 2005, 21(7): 3158-3164.
[26] LU G, FARHA O K, KRENO L E, et al. Fabrication of metal organic framework containing silica colloidal crystals for vapor sensing [J]. Advanced Materials, 2011, 23(38): 4449-4452.

[1] 李秋顺,成荣,张旭霖,陈燕,史建国,李明宇,于永江,董文飞. 聚合物薄膜对表面等离子体共振光谱的调制[J]. 浙江大学学报(工学版), 2015, 49(9): 1796-1804.