Please wait a minute...
浙江大学学报(工学版)
机械工程     
链刚性对高分子溶液在微纳通道内流动的影响
许少锋, 汪久根
浙江大学 机械工程学系,浙江 杭州 310027
Effect of chain rigidity on the flow of macromolecular solution in micro-and nanochannels
XU Shao-feng, WANG Jiu-gen
Department of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(676 KB)   HTML
摘要:

采用蠕虫状链(worm-like chain)模型表示高分子链,用耗散粒子动力学(DPD)方法模拟微纳通道内高分子溶液的压力流,研究链刚性对高分子链迁移以及通道内速度场的影响.研究结果表明,链刚性越强,高分子链受到的阻力越大,降低高分子链周围流体的速度,使高分子溶液整体流速减小.模拟结果还显示,当链刚度较小时,高分子链在微通道压力流中会向通道中心方向迁移,并随着流场增强迁移越明显,但随着链刚性增强,壁面附近的高分子链排空层厚度减小,通道中心处的高分子链浓度也减小,高分子链质心分布呈明显的双峰状,与实验结果吻合.模拟结果对相关微纳流控机械的设计和优化具有指导意义.

Abstract:

Dissipative particle dynamics (DPD) approach was used to investigate effect of chain rigidity on the pressure driven flow of macromolecular solution in micro-and nanochannels. The macromolecules were modeled with worm-like chains. The effect of chain rigidity on the velocity field in the channel. and the cross-streamline migration of macromolecules were studied. The results show that the flow resistance of chains increases with increasing chain rigidity, which can reduce the velocity of the fluids around the chains, thus the velocity of macromolecular solution in the channel decreases. The DPD simulation results also show that the chains migrate toward the channel centerline with small chain rigidity in the pressure driven flow, and both the migration toward the channel centerline and the thickness of depletion layer near the wall increases with the flow strength. However, with the increase of chain rigidity, the depletion layer at the walls decreases and the macromolecular concentration at the channel centerline also decreases, thus the bimodal distribution of chain center-of-mass becomes more pronounced. These simulation results are agree well with the experimental observations and can be used to design and optimize micro-and nanofluidic devices.

出版日期: 2014-08-01
:  TP 271  
基金资助:

国家自然科学基金资助项目(50775202);高等学校博士学科点专项科研基金资助项目(J20081235);浙江省自然科学基金重点资助项目(Z1100475).

通讯作者: 汪久根,男,教授,博导     E-mail: me_jg@zju.edu.cn
作者简介: 许少锋(1985—),男,博士生,从事机械仿生、微流控机械设计研究,E-mail:10925066@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

许少锋, 汪久根. 链刚性对高分子溶液在微纳通道内流动的影响[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2014.08.009.

XU Shao-feng, WANG Jiu-gen. Effect of chain rigidity on the flow of macromolecular solution in micro-and nanochannels. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2014.08.009.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.08.009        http://www.zjujournals.com/eng/CN/Y2014/V1/I8/1406

[1] JO K, CHEN Y L, DE PABLO J J, et al. Elongation and migration of single DNA molecules in microchannels using oscillatory shear flows [J]. Lab on A Chip, 2009, 9: 2348-2355.
[2] FANG L, HU H, LARSON R G. DNA configurations and concentration in shearing flow near a glass surface in microchannel [J]. Journal of Rheology, 2005, 49(1): 127-138.
[3] JENDREJACK R M, SCHWARTZ D C, DE PABLO J J, et al. Shear-induced migration in flowing polymer solutions: simulation of long-chain DNA in microchannels [J]. The Journal of Chemical Physics, 2004, 120(5): 2513-2529.
[4] USTA O B, BULTER J E, LADD A J C. Flow-induced migration of polymer in dilute solution[J]. Physics of Fluids, 2006, 18: 031703.
[5] KHARE R, GRAHAM M D, DE PABLO J J. Cross-stream migration of flexible molecules in a nanochannel [J]. Physical Review Letters, 2006, 96: 224-505.
[6] MILLAN J A, LARADJI M. Cross-stream migration of driven polymer solutions in nanoscale channels : a numerical study with generalized dissipative particle dynamics [J]. Macromolecules, 2009, 42: 803-810.
[7] REDDIG S, STARK H. Cross-streamline migration of a semiflexible polymer in a pressure driven flow [J]. The Journal of Chemical Physics, 2011,135: 165-101.
[8] CHELAKKOT R, WINKLER R G, GOMPPER G. Semiflexible polymer conformation, distribution and migration in microcapillary flow [J]. Journal of Physics: Condensed Matter, 2011, 23(18): 184117.
[9] CHELAKKOT R, WINKLER R G, GOMPPER G. Migration of semiflexible polymers in microcapillary flow [J]. Europhysics Letters, 2010, 91(1): 14001.
[10] STEINHAUSER D, KOSTER S, PFOHL T. Mobility gradient induces cross-streamline migration of semiflexible polymer [J]. ACS Macro Letters, 2012, 1(5): 541-545.
[11] HOOGERBRUGGE P J, KOELMAN J M V A. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics [J]. Europhysics Letters, 1992, 19(3): 155-156.
[12] ESPANOL P, WARREN P B. Statistical mechanics of dissipative particle dynamics [J]. Europhysics Letters, 1995, 30(4): 191-196.
[13] GROOT R D, WARREN P B. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation [J]. The Journal of Chemical Physics, 1997, 107 (11): 4423-4435.
[14] FAN X J, PHAN-THIEN N, CHEN S, et al.. Simulating flow of DNA suspension using dissipative particle dynamics [J]. Physics of Fluids, 2006, 18: 063102.
[15] DUONG-HONG D, PHAN-THIEN D, FAN X J. An implementation of no-slip boundary conditions in DPD [J]. Computational Mechanics, 2004, 35: 24-29.
[16] 郭佳意,李学进,梁好均. 流场驱动高分子链迁移穿过微通道的耗散粒子动力学模拟[J]. 高分子学报,2012,(2): 160-167.
GUO Jia-yi, LI Xue-jin, LIANG Hao-jun. Dissipative particle dynamics simulations of fluid-driven polymer chains through a microchannel [J]. ACTA Polymer Sinica,2012,(2): 160-167.
[17] LARSON R G, HU H, SMITH D E, et al. Brownian dynamcis simulations of a DNA molecule in an extensional flow field [J]. Journal of Rheology, 1999, 43(2): 267-304.

[1] 王玄, 陶建峰, 张峰榕, 吴亚瑾, 刘成良. 泵控非对称液压缸系统高精度位置控制方法[J]. 浙江大学学报(工学版), 2016, 50(4): 597-602.
[2] 周伟, 于淼. 基于高阶内模的非线性离散系统迭代学习控制[J]. 浙江大学学报(工学版), 2015, 49(4): 749-753.
[3] 许少锋, 汪久根. 链刚性对高分子溶液在微纳通道内流动的影响[J]. 浙江大学学报(工学版), 2014, 48(8): 1406-1410.
[4] 于淼, 王佳森, 齐冬莲. 具有未知控制方向的输出反馈自适应学习控制[J]. J4, 2013, 47(8): 1424-1430.
[5] 陈力, 杨莹春. 基于邻居相似现象的情感说话人识别[J]. J4, 2012, 46(10): 1790-1795.
[6] 张雷, 邬义杰, 王彬, 刘孝亮. 超磁致伸缩构件精密加工异形孔滑模控制[J]. J4, 2012, 46(8): 1412-1418.
[7] 张雷, 邬义杰, 王彬, 刘孝亮. 基于正交建模的空间柔顺构件多目标优化[J]. J4, 2012, 46(8): 1419-1423.
[8] 宓霄凌,黄文君,金建祥,施一明. 基于FPGA的控制系统高速总线的设计与实现[J]. J4, 2011, 45(11): 2043-2049.
[9] 张雷, 邬义杰, 李佳琪, 王彬, 刘孝亮. 基于线圈阻抗动态测量的GMM自传感模型[J]. J4, 2011, 45(10): 1726-1731.
[10] 刘学文,屈稳太,陈勇. 双馈系统中SVPWM有源逆变新技术[J]. J4, 2011, 45(9): 1609-1615.
[11] 丁辉, 胡协和. 交流异步电动机调速系统控制策略综述[J]. J4, 2011, 45(1): 50-58.
[12] 胡旭晓, 潘晓弘, 何卫, 陈罡. 一类多阶指数函数的逐级递推式拟合算法[J]. J4, 2010, 44(12): 2365-2369.
[13] 白寒, 管成. 电液比例系统鲁棒自适应动态表面控制[J]. J4, 2010, 44(8): 1441-1448.
[14] 白寒, 管成, 潘双夏. 基于模糊决策的推土机滑模鲁棒自适应控制[J]. J4, 2009, 43(12): 2178-2185.