Please wait a minute...
J4  2010, Vol. 44 Issue (6): 1191-1196    DOI: 10.3785/j.issn.1008-973X.2010.06.026
土木工程     
混凝土结构锈胀开裂预测的路径概率模型
王晓舟1,2, 金伟良1, 延永东1
1.浙江大学 结构工程研究所,浙江 杭州 310027; 2.汉嘉设计集团股份有限公司,浙江 杭州 310005
Path probability model of corrosion-crack assessment for existing reinforced concrete structures
WANG Xiao-zhou1,2, JIN Wei-liang1,YAN Yong-dong 1
1. Institute of Structural Engineering ,Zhejiang University, Hangzhou 310017, China; 2. Hanjia Design Group Co.,Ltd., Hangzhou 310005, China
 全文: PDF  HTML
摘要:

针对氯盐环境下服役混凝土结构钢筋锈蚀、锈蚀程度不易检测及混凝土锈致开裂的现状,基于混凝土锈胀开裂过程的随机性,提出一种预测钢筋锈蚀、混凝土锈胀裂缝开展时变特性的概率模型,并编制了计算程序.该模型可以模拟混凝土中钢筋锈胀开裂发展进程的路径,有效评估氯盐侵蚀环境下混凝土结构中钢筋锈蚀状况和锈胀裂缝宽度不同时段的概率分布,同时能估计构件钢筋样本锈蚀百分比.通过对濒海环境下某混凝土桥下部结构的耐久性评估,验证了该模型的准确性.该模型实现了对服役混凝土结构耐久性能的有效预测,评估结果可为工程维修和加固提供理论依据.

Abstract:

For the status that corrosion of reinforcement, indetectable corrosion degree and corrosion-induced crack of existing concrete structures in chloride-laden environment, a path probability model(PPM) to predict the stochastic corrosioncrack development of reinforced concrete(RC) structures with time was proposed. The time-dependent probability distribution of steel corrosion ratio, crack width of concrete due to corrosion and percentage of corroded steel samples of elements were estimated effectively on a series of random paths of corrosioncrack process simulated by computer programme. The substructure of an RC bridge in chlorideladen environment was illustrated to verify the precise and effectiveness of the present model by the assessment result of field inspection data. The model can effectively predict the durability behavior of existing concrete structures and the predicted result is a reasonable proof for optimal strategies of maintenance and repair.

出版日期: 2010-07-16
:  TU 375  
基金资助:

国家自然科学基金重点资助项目(50538070),国家“863”高技术研究发展计划资助项目(2006AA04Z422);交通部西部科技资助项目(200631800019,200631822302-06).

通讯作者: 金伟良,男,教授.     E-mail: jinwl@zju.edu.cn
作者简介: 王晓舟(1980—),男,浙江桐乡人,博士生,从事混凝土结构耐久性研究.E-mail: wangxz@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王晓舟, 金伟良, 延永东. 混凝土结构锈胀开裂预测的路径概率模型[J]. J4, 2010, 44(6): 1191-1196.

WANG Xiao-Zhou, JIN Wei-Liang, YAN Yong-Dong. Path probability model of corrosion-crack assessment for existing reinforced concrete structures. J4, 2010, 44(6): 1191-1196.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2010.06.026        http://www.zjujournals.com/eng/CN/Y2010/V44/I6/1191

[1] YAN Yandong , JIN Weiliang. Influence of cracking width to concrete durability[C]∥Proceedings of International Conference on Durability of Concrete Structures.Hangzhou, China:[s.n.],2008,2: 942946.

[2] JIN Weiliang, WANG Xiaozhou, SONG Zhigang. A probabilistic model for corrosion prediction of steel reinforcement[J]. Int J Modelling, Identification and Control, 2008,4(3): 268277.

[3] 宋志刚,金伟良,刘芳,等.钢筋锈蚀率概率分布的动态演进模拟[J],浙江大学学报:工学版,2006, 40 (10) : 17491753.

SONG Zhigang, JIN Weiliang, LIU Fang, et al. Dynamic simulation method for probability evolution of reinforcement steel corrosion[J]. Journal of Zhejiang University :Engineering Science, 2006, 40 (10) : 17491753.

[4] REDDY B, GLASS G K, LIM P J, et al. On the corrosion risk presented by chloride bound in concrete[J].Cement & Concrete Composites, 2002(24): 15.

[5] OH B H, JANG S Y. Prediction of diffusivity of concrete based on simple analytic equations[J]. Cement and Concrete Research , 2004, 34(3): 463480.

[6] VAL D V, STEWART M G. Lifecycle cost analysis of reinforced concrete structures in marine environments[J]. Structural Safety, 2003(25): 343362.

[7] VU K A T, STEWART M G.Structural reliability of concrete bridges including improved chlorideinduced corrosion models[J].Structural Safety, 2000(22): 313333.

[8] LIU T, WEYERS R E. Modeling the dynamic corrosion process in chloride contaminated concrete structures[J]. Cement and Concrete Research, 1998(28): 365379.

[9] DAI J G, KATO E, IWANAMI M, et al.Variations of steel corrosion and itinduced and influenced cracks in RC tensile ties accelerately deteriorated by impressedcurrent method[C]∥YOKOTA H, SHIMOMURA T, eds. Proceedings of International Workshop on Life Cycle Management of Coastal Concrete Structures. Nagaoka, Japan:Port and Airport Research Institute,2006:101108.

[10] VIDAL T, CASTEL A, FRANCOIS R. Analyzing crack width to predict corrosion in reinforced concrete[J].Cement and Concrete Research, 2004(34): 165174.

[11] 浙江省乐清市清江大桥检测及静载试验报告[R].武汉:中交第二公路勘测设计研究院有限公司,2008.

[1] 金伟良, 王毅. 持续荷载与氯盐作用下钢筋混凝土梁力学性能试验[J]. J4, 2014, 48(2): 221-227.
[2] 章思颖, 金伟良, 许晨. 混凝土中胺类有机物——胍对钢筋氯盐腐蚀的作用[J]. J4, 2013, 47(3): 449-455.
[3] 金伟良,李志远,许晨. 基于相对信息熵的混凝土结构寿命预测方法[J]. J4, 2012, 46(11): 1991-1997.
[4] 项贻强, 程坤, 郭冬梅, 李威, 林士旭. 基于热力耦合的钢筋混凝土锈胀开裂分析[J]. J4, 2012, 46(8): 1444-1449.
[5] 姬永生, 王志龙, 徐从宇, 周敏, 赵稳. 混凝土中钢筋腐蚀过程的极化曲线分析[J]. J4, 2012, 46(8): 1457-1464.
[6] 陈驹, 金伟良, 盛晓红, 等. 新型可动结点试验研究和数值分析[J]. J4, 2009, 43(10): 1878-1882.