Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2019, Vol. 34 Issue (2): 142-    DOI:
    
Functional sample path properties of subsequence's C-R increments for l^p-valued Wiener processes in H?older norm
WEI Qi-cai, WANG Wen-sheng
1. School of Math. & Comput. Sci., Wuhan Polytechnic Univ., Wuhan 430023, China;
2. School of Economics, Hangzhou Dianzi Univ., Hangzhou 310018, China
Download:   PDF(247KB)
Export: BibTeX | EndNote (RIS)      

Abstract  This paper obtains the functional sample path properties of subsequence's C-R increments
for l^p-valued, 1 · p < 1, Wiener processes. By which, the functional laws of iterated logarithm
for l^p-valued Wiener processes are generalized.


Key words l^p-valued Wiener processes      functional sample path properties      subsequence's C-R increments      H?older norm      
Published: 05 July 2019
CLC:  O211.6  
Cite this article:

WEI Qi-cai, WANG Wen-sheng. Functional sample path properties of subsequence's C-R increments for l^p-valued Wiener processes in H?older norm. Applied Mathematics A Journal of Chinese Universities, 2019, 34(2): 142-.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2019/V34/I2/142


l^p-值Wiener过程子列C-R型增量在H?older范数下的泛函样本轨道性质

得到了l^p-值Wiener过程(1 · p < 1)子列C-R型增量, 在H?older范数下的泛函样本轨道性质, 推广了l^p-值Wiener过程的泛函重对数定律.
关键词: lp-值Wiener过程; 泛函样本轨道性质; 子列C-R型增量; H?older范数.

关键词: l^p-值Wiener过程,  泛函样本轨道性质,  子列C-R型增量,  H?older范数 
[1] WEI Qi-cai. Functional sample path properties for subsequence's $\boldsymbol{C}$-$\boldsymbol{R}$ increments of $k$-dimensional Brownian motion in Holder norm[J]. Applied Mathematics A Journal of Chinese Universities, 2015, 30(3): 355-366.