Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2014, Vol. 29 Issue (2): 233-244    DOI:
    
Higher order uniform convergent SIPG method for singularly perturbed problem
ZHU Peng1, YANG Yu-bo2, YIN Yun-hui1
1. School of Math., Phys. and Inform., Jiaxing Univ. , Jiaxing 314001, China
2. College of Nanhu, Jiaxing Univ., Jiaxing 314001, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  In this paper, a higher order uniform convergence of the SIPG method for 1-d singularly perturbed problem of convection-diffusion type is analyzed on Shishkin mesh. A uniform error estimate of $\mathcal{O}((N^{-1}\ln N)^k)$ is obtained in energy norm, if $k$-th ($k\geq 1$) piecewise polynomial is used and the total number of element is $N$. The numerical experiments verify the theoretical results.

Key wordssingularly perturbed problem      Shishkin mesh      discontinuous Galerkin method      higher order uniform convergence     
Received: 30 January 2013      Published: 29 July 2018
CLC:  O241.82  
Cite this article:

ZHU Peng, YANG Yu-bo, YIN Yun-hui. Higher order uniform convergent SIPG method for singularly perturbed problem. Applied Mathematics A Journal of Chinese Universities, 2014, 29(2): 233-244.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2014/V29/I2/233


奇异摄动问题SIPG方法的高阶一致收敛性分析

在Shishkin网格上分析了高阶SIPG方法求解一维对流扩散型奇异摄动问题的 一致收敛性. 取$k(k\geq1)$次分片多项式和网格剖分单元数为$N$时, 在能量范数度量下Shishkin网格上可获得 $\mathcal{O}((N^{-1}\ln N)^k)$的一致误差估计. 在数值算例部分对理论分析结果进行了验证.

关键词: 奇异摄动问题,  Shishkin 网格,  间断有限元方法,  高阶一致收敛性 
[1] ZHENG Cong, CHENG Xiao-liang, LIANG Ke-wei. Numerical analysis of inverse elastic problem with damage[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(4): 476-490.
[2] WANG Zi-qiang, CAO Jun-ying. A high order schema for the numerical solution of the nonlinear two-dimensional Volterra integral equations[J]. Applied Mathematics A Journal of Chinese Universities, 2014, 29(4): 397-411.