Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2014, Vol. 29 Issue (2): 127-137    DOI:
    
A group bridge approach for joint estimation of multiple graphical models
ZHANG Ling-jie, ZHANG Hai
Department of Mathematics, Northwest University, Xi’an 710069, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  Gaussian graph model which studies the relationships between the independent random variables is one of the topic of machine learning. In this paper, a method is proposed to link the estimation of separate graphical models through a hierarchical penalty. By studying the highdimensional statistical properties of the new model, the asymptotic consistency and sparsistency of the proposed parameter estimation are proved.

Key wordsgraphical models      covariance matrix      hierarchical bridge penalty      bridge approach     
Received: 20 December 2013      Published: 28 July 2018
CLC:  O212.1  
Cite this article:

ZHANG Ling-jie, ZHANG Hai. A group bridge approach for joint estimation of multiple graphical models. Applied Mathematics A Journal of Chinese Universities, 2014, 29(2): 127-137.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2014/V29/I2/127


多图模型的联合估计的群桥方法

高斯图模型研究独立随机变量之间的关系. 主要针对该模型, 提出了一种分层惩罚连接单个图模型估计的多图模型. 研究了新模型的 高维统计性质, 给出模型的参数估计, 并得到了相合性及稀疏性两大理论.

关键词: 图模型,  协方差矩阵,  分层罚项,  桥方法 
[1] WEI Yue-song. Generalized likelihood ratio approach for identifying nonlinear structural vector autoregressive causal graphs[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(2): 143-152.