Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2018, Vol. 33 Issue (2): 202-210    DOI:
    
Asymptotic distribution of Wilcoxon two-sample statistic under an associated sample
LI Ling1, ZHAO Ya-ling2, SHEN Xiao-xin2, QIN Yong-song3
1. Department of Mechanical and Electrical Engineering, Wuzhou Vocational College, Wuzhou 543002, China;
2. College of Mathematics, Physics and Information Engineering, Zhejiang Normal University, Jinhua 321004, China;
3. College of Mathematics and Statistics, Guangxi Normal University, Guilin 541004, China
Download:   PDF(206KB)
Export: BibTeX | EndNote (RIS)      

Abstract  The topic of the asymptotic distribution of the Wilcoxon two-sample statistic under
an associated sample is investigated in this paper. Using Hoeffding decomposition, it is shown that the
asymptotic distribution of the Wilcoxon two-sample statistic under an associated sample is the normal
distribution, which generalizes the existing asymptotic result of the Wilcoxon two-sample statistic under
a negatively associated sample.


Key wordsassociated sample      Wilcoxon two-sample statistic      asymptotic distribution     
Published: 26 July 2018
CLC:  O212.1  
Cite this article:

LI Ling, ZHAO Ya-ling, SHEN Xiao-xin, QIN Yong-song. Asymptotic distribution of Wilcoxon two-sample statistic under an associated sample. Applied Mathematics A Journal of Chinese Universities, 2018, 33(2): 202-210.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2018/V33/I2/202


相协样本下Wilcoxon两样本统计量的渐近分布

研究了相协样本下Wilcoxon两样本统计量的渐近分布的问题. 利
用Hoeffding分解方法, 获得了相协样本下Wilcoxon两样本统计量的渐近分布为正
态分布的结果, 推广了负相协样本下Wilcoxon两样本统计量的渐近分布的结果.

关键词: 相协样本,  Wilcoxon两样本统计量,  渐近分布 
[1] DING Fei-peng, CHEN Jian-bao. Fast efficient estimation and application of partially linear single index model with fixed effects[J]. Applied Mathematics A Journal of Chinese Universities, 2019, 34(2): 127-.
[2] ZHU Yan-bei, ZONG Rui-xue, QIAO Xu-dong, ZHAO Zhang-rui, YANG Wen-zhi. The convergence of LS estimator for nonlinear regression models based on m-WOD errors[J]. Applied Mathematics A Journal of Chinese Universities, 2018, 33(2): 191-201.
[3] NI Jia-lin, FU Ke-ang. Composite quantile estimation for moderate deviations from a unit root model with possibly infinite variance errors[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(1): 41-48.
[4] DING Fei-peng, CHEN Jian-bao. Penalized quadratic inference estimation for partially linear additive dynamic panel model with fixed effects[J]. Applied Mathematics A Journal of Chinese Universities, 2018, 33(1): 21-35.
[5] YUAN Qiao-li, WU Liu-cang, DAI Lin. Parameters estimation for mixture of double generalized linear models [J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(3): 267-276.
[6] ZHU Zhi-e, WU Liu-cang, DAI Lin. Parameter estimation for linear joint location and scale models with mixture skew-t-normal data[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(4): 379-389.
[7] WANG Zi-hao, WU Liu-cang, DAI Lin. Empirical likelihood for double generalized linear models[J]. Applied Mathematics A Journal of Chinese Universities, 2015, 30(1): 10-16.
[8] WANG Ji-xia, XIAO Qing-xian. Weighted least squares estimations of time-varying parameters for local stationary diffusion model[J]. Applied Mathematics A Journal of Chinese Universities, 2014, 29(3): 277-287.
[9] ZHANG Ling-jie, ZHANG Hai. A group bridge approach for joint estimation of multiple graphical models[J]. Applied Mathematics A Journal of Chinese Universities, 2014, 29(2): 127-137.
[10] ZHAO Jing, CHENG Wei-hu, WU Mi-xia, ZHAO Yan. Generalized $p$-value tests of variance components in panel data model[J]. Applied Mathematics A Journal of Chinese Universities, 2014, 29(2): 171-179.