Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2014, Vol. 29 Issue (4): 389-396    DOI:
    
A POD-based reduced-order finite difference extrapolation iterative format for 2D hyperbolic equations
TENG Fei1, LUO Zhen-dong2, LI Xiao-bo2
1. School of Math. Sci., Kaili college, Kaili 556011, China
2. School of Math. and Phys., North China Electric Power University, Beijing 102206, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  A proper orthogonal decomposition (POD) technique is employed to establish a PODbased reduced-order finite difference extrapolation iterative format for two-dimensional (2D) hyperbolic equations, which includes very few degrees of freedom but holds sufficiently high accuracy. The error estimates of the POD-based reduced-order finite difference solutions and the algorithm implementation of the POD-based reduced-order finite difference extrapolation iterative format are provided. A numerical example is used to illustrate that the results of numerical computation are consistent with theoretical conclusions. Moreover, it is shown that the POD-based reduced-order finite difference extrapolation iterative format is feasible and efficient for solving 2D hyperbolic equations.

Key wordsproper orthogonal decomposition      reduced-order finite difference extrapolation iterative format      hyperbolic equation     
Received: 08 July 2014      Published: 08 June 2018
CLC:  O242.21  
Cite this article:

TENG Fei, LUO Zhen-dong, LI Xiao-bo. A POD-based reduced-order finite difference extrapolation iterative format for 2D hyperbolic equations. Applied Mathematics A Journal of Chinese Universities, 2014, 29(4): 389-396.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2014/V29/I4/389


二维双曲方程基于POD方法的降阶有限差分外推迭代格式

利用特征投影分解(POD)方法建立二维双曲型方程的一种基于POD方法的含有很少自由度但具有足够高精度的降阶有限差分外推迭代格式, 给出其基于POD方法的降阶有限差分解的误差估计及基于POD方法的降阶有限差分外推迭代格式的算法实现. 用一个数值例子去说明数值计算结果与理论结果相吻合. 进一步说明这种基于POD方法的降阶有限差分外推迭代格式对于求解二维双曲方程是可行和有效的.

关键词: 特征投影分解,  降阶有限差分外推迭代格式,  双曲方程 
[1] ZHANG Hou-chao, SHI Dong-yang. High accuracy analysis of a new low order nonconforming mixed finite element method for the EFK equation[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(4): 437-454.
[2] DIAO Qun, SHI Dong-yang, ZHANG Fang. A new $H^{1}$-Galerkin mixed finite element analysis for Sobolev equation[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(2): 215-224.