Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2015, Vol. 30 Issue (1): 71-83    DOI:
    
Composite quantile regression estimation in non-parametric regression model under left-truncated data
WANG Jiang-feng1, TIAN Xiao-min2, ZHANG Hui-zeng2, WEN Li-min3
1. School of Statis. Math., Zhejiang Gongshang Univ., Hangzhou 310018, China
2. Dept. of Math., Hangzhou Normal Univ., Hangzhou 310036, China
3. School of Math. Sci., Jiangxi Normal Univ., Nanchang 330022, China
    School of Inform. Tech., Jiangxi Normal Univ., Nanchang 330013, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  In this paper, a local linear composite quantile regression estimator of regression function is constructed in the regression model with heteroscedastic error under left-truncated data. The asymptotic normality of the proposed estimator is also established. The estimator is much more efficient than the local linear regression estimator for commonly-used non-normal error distributions via simulations.

Key wordsleft-truncated data      non-parametric regression      composite quantile regression      asymptotic normality     
Received: 24 July 2014      Published: 06 June 2018
CLC:  O212  
Cite this article:

WANG Jiang-feng, TIAN Xiao-min, ZHANG Hui-zeng, WEN Li-min. Composite quantile regression estimation in non-parametric regression model under left-truncated data. Applied Mathematics A Journal of Chinese Universities, 2015, 30(1): 71-83.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2015/V30/I1/71


左截断数据下非参数回归模型的复合分位数回归估计

利用局部多项式方法研究了误差具有异方差结构的非参数回归模型, 在左截断数据下构造了回归函数的复合分位数回归估计, 并得到了该估计的渐近正态性结果, 最后通过模拟, 在服从一些非正态分布的误差下, 得到该估计比局部线性估计更有效.

关键词: 左截断数据,  非参数回归,  复合分位数回归,  渐近正态性 
[1] NI Jia-lin, FU Ke-ang. Composite quantile estimation for moderate deviations from a unit root model with possibly infinite variance errors[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(1): 41-48.
[2] WEI Shi, LI Ze-yi. Bayes estimation of Burr XII distribution parameter in the composite LINEX loss of symmetry[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(1): 49-54.
[3] BAI Yong-xin, TIAN Mao-zai. Confidence interval construction for the risk difference of chronic disease based on saddle-point approximation under poisson distribution[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(3): 253-266.
[4] YUAN Qiao-li, WU Liu-cang, DAI Lin. Parameters estimation for mixture of double generalized linear models [J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(3): 267-276.
[5] DING Meng-zhen, YANG Lian-qiang, JIANG Kun, WANG Xue-jun. Adaptive penalized spline regression model via radial basis[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(3): 306-314.
[6] ZHU Zhi-e, WU Liu-cang, DAI Lin. Parameter estimation for linear joint location and scale models with mixture skew-t-normal data[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(4): 379-389.
[7] HE Chao-bing. Bayesian parameter estimation of failure rate model with a change point for truncated and censored data[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(4): 413-427.
[8] CHENG Di, ZHANG Shi-bin. Bayesian inference for dynamic heterogeneity stochastic frontier model[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(2): 127-135.
[9] BAI Yong-xin, TIAN Mao-zai. Confidence interval construction for the incidence of chronic diseases[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(2): 136-142.
[10] HE Chao-bing. Parameter estimation of Weibull distribution with multiple change points for truncated and censored data[J]. Applied Mathematics A Journal of Chinese Universities, 2015, 30(2): 127-138.
[11] WANG Zi-hao, WU Liu-cang, DAI Lin. Empirical likelihood for double generalized linear models[J]. Applied Mathematics A Journal of Chinese Universities, 2015, 30(1): 10-16.
[12] XIA Ye-mao, GOU Jian-wei, LIU Ying-an. Semi-parametric Bayesian analysis for factor analysis model mixed with hidden Markov model[J]. Applied Mathematics A Journal of Chinese Universities, 2015, 30(1): 17-30.