Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2015, Vol. 30 Issue (1): 43-54    DOI:
    
The nonlinear variational inequality problem arising from American barrier option
SUN Yu-dong, WANG Xiu-fen
School of Science, Guizhou Minzu University, Guiyang 550025, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  In this text, the nonlinear variational inequality problem which arises from the valuation of American barrier option is studied. Firstly, the weak solution of the variational inequality is defined. Secondly, the existence and uniqueness of the solutions in the weak sense are proved by using the Schaefer fixed point theory and penalty method.

Key wordsnonlinear variational inequality      weak solution      Schaefer fixed point theory      penalty method     
Received: 25 November 2014      Published: 06 June 2018
CLC:  O211.6  
  F830.9  
Cite this article:

SUN Yu-dong, WANG Xiu-fen. The nonlinear variational inequality problem arising from American barrier option. Applied Mathematics A Journal of Chinese Universities, 2015, 30(1): 43-54.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2015/V30/I1/43


基于美式障碍期权定价的非线性变分不等式问题

研究了一类基于美式障碍期权定价的非线性变分不等式问题. 首先定义了变分不等式问题的弱解. 其次利用惩罚方法和Schaefer不动点定理证明了该变分不等式在弱意义下的解是存在且唯一的.

关键词: 非线性变分不等式,  弱解,  Schaefer不动点定理,  惩罚方法 
[1] SUN Xiao-xia , SHI Yin-hui. On estimations for the parameters of fractional diffusion models and their applications[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(3): 295-305.
[2] WANG Chun-fa, CHEN Rong-da. Option pricing in Markov regime switching Levy models using Fourier-Cosine expansions[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(4): 390-404.
[3] GAO Ping. Strong stability of $(\alpha,\beta)$-mixing sequences[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(4): 405-412.
[4] ZHANG Jie-song, XIAO Qing-xian. Optimal reinsurance of a dependent mulit-type risk model under variance reinsurance premium principle[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(3): 253-261.
[5] SUN Yu-dong, SHI Yi-min, TONG Hong. The pricing of step options under the nonlinear Black-Scholes model[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(3): 262-272.
[6] FEI Shi-long. Several recurrence and transience of states for Markov chains in random environments[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(3): 273-280.
[7] WEI Yue-song. Generalized likelihood ratio approach for identifying nonlinear structural vector autoregressive causal graphs[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(2): 143-152.
[8] LI Wen-han, LIU Li-xia, SUN Hong-yan. The call option pricing for the stocks with jump-diffusion process based on foreign exchange rate[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(1): 21-29.
[9] YANG Jian-qi, ZHAO Shou-juan. Quadratic hedging problems for non-tradable assets[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(1): 30-38.
[10] DONG Yan. The pricing of Bala options under the nonlinear Black-Scholes model[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(1): 9-20.
[11] LI Zhi-guang, KANG Shu-gui. The pricing of geometric average Asian options under the nonlinear Black-Scholes model[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(1): 39-49.
[12] WEI Qi-cai. Functional sample path properties for subsequence's $\boldsymbol{C}$-$\boldsymbol{R}$ increments of $k$-dimensional Brownian motion in Holder norm[J]. Applied Mathematics A Journal of Chinese Universities, 2015, 30(3): 355-366.
[13] PENG Dan, HOU Zhen-ting. Dividend payments with barrier strategy in the discrete-time interaction risk model[J]. Applied Mathematics A Journal of Chinese Universities, 2015, 30(1): 31-42.