Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2015, Vol. 30 Issue (2): 234-244    DOI:
    
A kind of efficient difference method for time-fractional option pricing model
YANG Xiao-zhong, ZHANG Xue, WU Li-fei
School of Mathematis and Physics, North China Electric Power University, Beijing 102206, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  It is important in the application to study the numerical computation for timefractional option pricing model (time-fractional Black-Scholes equation). Explicit-Implicit (E-I) scheme and Implicit-Explicit (I-E) scheme are constructed for solving time-fractional Black-Scholes equation. The stable, convergent, existence and uniqueness of solutions given by these schemes are discussed. Theoretical analysis demonstrates that E-I and I-E schemes are unconditional stability and convergent. They have the same calculation. Numerical experiments show that computational accuracy of E-I and I-E schemes is similar to the classic Crank-Nicolson (C-N) scheme, and their computational efficiency (computing time) is 30% higher than C-N scheme. Theoretical analysis and numerical experiments demonstrate the superiority of E-I and I-E schemes for solving time-fractional option pricing model, and affirm that time-fractional Black-Scholes equation is more in line with the actual financial market.

Key wordstime-fractional option pricing model      explicit-implicit scheme      stability      convergence      numerical experiment     
Received: 23 October 2014      Published: 05 June 2018
CLC:  O241.8  
Cite this article:

YANG Xiao-zhong, ZHANG Xue, WU Li-fei. A kind of efficient difference method for time-fractional option pricing model. Applied Mathematics A Journal of Chinese Universities, 2015, 30(2): 234-244.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2015/V30/I2/234


时间分数阶期权定价模型的一类有效差分方法

时间分数阶期权定价模型(时间分数阶Black-Scholes方程)数值解法的研究具有重要的理论意义和实际应用价值. 对时间分数阶Black-Scholes方程构造了显-隐格式和隐-显差分格式, 讨论了两类格式解的存在唯一性, 稳定性和收敛性. 理论分析证实, 显-隐格式和隐-显格式均为无条件稳定和收敛的, 两种格式具有相同的计算量. 数值试验表明:显-隐和隐-显格式的计算精度与经典Crank-Nicolson(C-N)格式的计算精度相当, 其计算效率(计算时间) 比C-N格式提高30%. 数值试验验证了理论分析, 表明本文的显-隐和隐-显差分方法对求解时间分数阶期权定价模型是高效的, 证实了时间分数阶Black-Scholes方程更符合实际金融市场.

关键词: 时间分数阶期权定价模型,  显-隐格式,  稳定性,  收敛性,  数值试验 
[1] XU Xing-ye. Suffcient and necessary condition for the existence of positive entire solutions of a class of singular nonlinear polyharmonic equations#br#[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(4): 403-412.
[2] ZHANG Hou-chao, SHI Dong-yang. High accuracy analysis of a new low order nonconforming mixed finite element method for the EFK equation[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(4): 437-454.
[3] SHI Lei , XIAO Qing-kun , LIU Bao-qing. Existence and stability of front solutions of the amplitude equations for rotating magnetoconvection[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(2): 142-148.
[4] TANG Xu-fei, XI Meng-mei, CHEN Wei-yang, WU Yi, WANG Xue-jun. Complete moment convergence for arrays of rowwise NA random variables[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(1): 66-78.
[5] GUO Ming-le, ZHU Fu-xiu. Complete $q$th moment convergence of weighted sums for arrays of rowwise NSD random variables[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(1): 55-65.
[6] GAO Ping. Strong stability of $(\alpha,\beta)$-mixing sequences[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(4): 405-412.
[7] TIAN Xiao-hong, XU Rui, WANG Zhi-li. Global exponential stability and Hopf bifurcation of inertial Cohen-Grossberg neural networks with time delays in leakage terms[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(4): 428-440.
[8] LI Shao-e, FENG Wei-zhen. Practical stability of impulsive switched systems with time delay by Lyapunov-Razumikhin method[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(3): 327-337.
[9] YANG Yu, ZHOU Jin-ling. Global stability of a diffusive virus dynamics model with Beddington-DeAngelis incidence function[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(2): 161-166.
[10] DING Yang, WU Yi, WANG Xue-jun, XIE Xiu-juan, DU Ling. Complete convergence for weighted sums of widely orthant dependent random variables[J]. Applied Mathematics A Journal of Chinese Universities, 2015, 30(4): 417-424.
[11] FU Jin-bo, CHEN Lan-sun, CHENG Rong-fu. Global stability of a delayed viral infection model with latent period and immune response[J]. Applied Mathematics A Journal of Chinese Universities, 2015, 30(4): 379-388.
[12] HAN Jing-qi, SHEN Guang-jun, YAN Li-tan. Least squares estimation for $\alpha$-weighted fractional Brownian bridge[J]. Applied Mathematics A Journal of Chinese Universities, 2015, 30(4): 432-444.
[13] XU Chao-qun, LI Hong-en, YUAN San-ling. Study on a stochastic phage-bacteria model in which the death rate of phage is influenced by noise[J]. Applied Mathematics A Journal of Chinese Universities, 2015, 30(3): 253-261.
[14] ZHANG Dao-xiang, CAO Lei. Analysis of stability and bifurcation of a SEIR epidemic model with nonlinear incidence[J]. Applied Mathematics A Journal of Chinese Universities, 2015, 30(2): 157-164.
[15] YANG Hong, ZHU Huan. Dynamical behavior of SIR epidemical model with time delay[J]. Applied Mathematics A Journal of Chinese Universities, 2015, 30(2): 165-170.