Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2015, Vol. 30 Issue (4): 462-468    DOI:
    
On the least  signless Laplacian eigenvalue of a $P_t$-free non-bipartite connected graph
LIU Xiao-rong1,2, GUO Shu-guang2, ZHANG Rong2
1. Department of Mathematics, Qinghai Normal University, Xining 810008, China
2. School of Mathematics and Statistics, Yancheng Teachers University, Yancheng 224002, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  For a connected graph $G$, the least eigenvalue $q_n(G)$ of the signless Laplacian of $G$ equals zero if and only if $G$ is bipartite. $q_n(G)$ is often used to measure the non-bipartiteness of a graph $G$, and has attracted the interest of more and more researchers. This paper investigates conditions depending on $q_n(G)$ under which a graph $G$ contains a long path, and characterizes the extremal graph in which the least signless Laplacian eigenvalue attains the minimum among all the $P_t$-free non-bipartite unicyclic graphs and $P_t$-free non-bipartite connected graphs of order $n$, respectively.

Key wordsnon-bipartite unicyclic graph      non-bipartite connected graph      signless Laplacian      least eigenvalue     
Received: 03 June 2015      Published: 19 May 2018
CLC:  O157  
Cite this article:

LIU Xiao-rong, GUO Shu-guang, ZHANG Rong. On the least  signless Laplacian eigenvalue of a $P_t$-free non-bipartite connected graph. Applied Mathematics A Journal of Chinese Universities, 2015, 30(4): 462-468.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2015/V30/I4/462


不含$P_t$的非二部连通图的最小$Q$-特征值

对于一个连通图而言, 它的最小$Q$-特征值为零当且仅当它是二部图. 图的最小$Q$-特征值常被用来衡量一个图的非二部程度, 因而受到研究者的广泛关注. 文中研究了图中存在长路的最小$Q$-特征值条件, 分别确定了最小$Q$-特征值最小的不含路$P_t$的非二部单圈图和非二部连通图.

关键词: 非二部单圈图,  非二部连通图,  最小Q-特征值 
[1] WU Bao-feng, PANG Lin-lin, SHEN Fu-qiang. On the least signless Laplacian eigenvalue of graphs[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(1): 83-89.