Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2016, Vol. 31 Issue (2): 161-166    DOI:
    
Global stability of a diffusive virus dynamics model with Beddington-DeAngelis incidence function
YANG Yu, ZHOU Jin-ling
School of Science and Technology, Zhejiang International Studies University, Hangzhou, 310012, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  A diffusive virus dynamics model with Beddington-DeAngelis incidence function is investigated. By constructing Lyapunov function, it is shown that the infection equilibrium is globally asymptotically stable.

Key wordsvirus model      diffusion      Lyapunov function      global stability     
Received: 10 August 2015      Published: 17 May 2018
CLC:  O175  
Cite this article:

YANG Yu, ZHOU Jin-ling. Global stability of a diffusive virus dynamics model with Beddington-DeAngelis incidence function. Applied Mathematics A Journal of Chinese Universities, 2016, 31(2): 161-166.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2016/V31/I2/161


一类具有扩散和Beddington-DeAngelis反应函数的病毒模型的全局稳定性

研究了一类具有扩散和Beddington-DeAngelis反应函数的病毒模型. 通过构造Lyapunov函数, 证明了模型的感染平衡点是全局渐近稳定的.

关键词: 病毒模型,  扩散,  Lyapunov函数,  全局稳定性 
[1] LIU Jiang, ZHANG Long, JIANG Zhong-chuan, LI Yan-qing. Synchronous control on inverter system of grid connected high-power wind generators with nonlinear and pulse disturbance#br#[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(4): 388-402.
[2] YOU Tong-shun. The three-step implicit-explicit hp-local discontinuous Galerkin finite element method for nonlinear convection diffusion problems[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(4): 491-500.
[3] LI Shao-e, FENG Wei-zhen. Practical stability of impulsive switched systems with time delay by Lyapunov-Razumikhin method[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(3): 327-337.
[4] ZHANG Jian-song, ZHANG Yue-zhi, ZHU Jiang, YANG Dan-ping. Split characteristic mixed finite element methods for advection-dominated diffusion equation[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(3): 338-350.