Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2016, Vol. 31 Issue (3): 338-350    DOI:
    
Split characteristic mixed finite element methods for advection-dominated diffusion equation
ZHANG Jian-song1, ZHANG Yue-zhi1, ZHU Jiang2, YANG Dan-ping3
1. Department of Applied Mathematics, China University of Petroleum, Qingdao 266580, China
2. Laboratorio Nacional de Computa?cao Cient?fica, 25651-075 Petropolis, RJ, Brazil
3. Department of Mathematics, East China Normal University, Shanghai 200062, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  A split modified method of characteristics mixed finite element (SMMOC-MFE) and a split modified method of characteristics with adjusted advection mixed finite element (SMMOCAA-MFE) are proposed for solving advection-dominated diffusion equations, in which the mixed element systems are symmetric positive definite, and the original variable $u$ and the diffusive flux $\bm\sigma=-\varepsilon\nabla u$ can be solved separately. The optimal-order error estimates in weighted energy norm are derived and some numerical implementations are given to confirm the convergence results.

Key wordsadvection-dominated diffusion equations      mixed element      the method of characteristics      split solution      symmetric positive definite system     
Received: 10 April 2016      Published: 16 May 2018
CLC:  O175.14  
Cite this article:

ZHANG Jian-song, ZHANG Yue-zhi, ZHU Jiang, YANG Dan-ping. Split characteristic mixed finite element methods for advection-dominated diffusion equation. Applied Mathematics A Journal of Chinese Universities, 2016, 31(3): 338-350.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2016/V31/I3/338


对流占优扩散方程的分裂特征混合有限元方法

利用修正的特征线方法, 构建一类求解对流占优扩散方程的分裂特征混合有限元算法. 在新的算法中, 混合系统的系数矩阵对称正定, 且原未知函数$u$与流函数 $\bm\sigma=-\varepsilon\nabla u$可分离求解. 推导了加权能量模意义下的最优阶误差估计, 并给出数值算例验证理论上的分析结果.

关键词: 混合有限元,  特征线方法,  分裂解,  对称正定系统,  对流占优扩散方程 
[1] Taogetusang. The new complexion solutions of the (2+1) dimension modified Zakharov-Kuznetsov equation [J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(1): 33-40.
[2] LIU Jiang, ZHANG Long, JIANG Zhong-chuan, LI Yan-qing. Synchronous control on inverter system of grid connected high-power wind generators with nonlinear and pulse disturbance#br#[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(4): 388-402.
[3] BAO Li-ping. A class of boundary value problem of singular perturbed semi-linear differential systems with discontinuous source term[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(4): 413-422.
[4] YUAN Rong, LIU Hui-fang. Complex oscillation of solutions of some second order non-homogeneous linear di?erential equations#br#[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(4): 431-436.
[5] YIN Xiao-jun, YANG Lian-gui, LIU Quan-sheng, SU Jin-mei, WU Guo-rong. Nonlinear ZK equation under the external forcing with a complete Coriolis force#br#[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(4): 423-430.
[6] HAN Jian-bang, SHEN Qi-xia. Double boundary layers of quadratic nonlinear singularly perturbed boundary value problem with infinite boundary values[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(3): 316-326.