Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2016, Vol. 31 Issue (3): 307-315    DOI:
    
The asymptotic solution of a class of singular perturbed semi-linear delayed parabolic partial differential equation
BAO Li-ping
School of Science , Hangzhou Dianzi University, Hangzhou 310018, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  In this paper, a class of initial boundary problem of the singular perturbed semi-linear delayed parabolic partial differential equation is discussed. The formal asymptotic expansion of the problem is obtained. The maximum principle of the singular perturbed delayed semi-linear parabolic partial differential equations is proved. Then, the maximum-norm estimation and Schauder estimation for this problem are obtained. By the maximum-norm estimation and Schauder estimation for this problem, the existence and uniqueness of the solution of the problem on the columnar zone is proved, and the uniformly valid estimation of the asymptotic expansion is gained.

Key wordssingular perturbation      semi-linear      delay parabolic differential equation      asymptotic expansion      Schauder estimation      maximum-norm estimation      estimation of the remainder     
Received: 25 November 2015      Published: 16 May 2018
CLC:  O175.12  
Cite this article:

BAO Li-ping. The asymptotic solution of a class of singular perturbed semi-linear delayed parabolic partial differential equation. Applied Mathematics A Journal of Chinese Universities, 2016, 31(3): 307-315.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2016/V31/I3/307


一类奇摄动半线性时滞抛物型偏微分方程的渐近解

文中讨论了一类奇摄动时滞抛物型偏微分方程的初边值问题, 得到了其形式渐近展开, 证明了奇摄动半线性时滞偏微分方程的极大值原理, 从而得到了最大值估计及相应的Schuader估计. 在此基础上, 得到了柱状区域上解的存在唯一性和渐近解的一致有效性.

关键词: 奇摄动,  半线性,  时滞抛物型方程,  渐近展开,  Schuader估计,  最大值原理,  余项估计 
[1] BAO Li-ping. A class of boundary value problem of singular perturbed semi-linear differential systems with discontinuous source term[J]. Applied Mathematics A Journal of Chinese Universities, 2017, 32(4): 413-422.