Please wait a minute...
Applied Mathematics A Journal of Chinese Universities  2016, Vol. 31 Issue (3): 262-272    DOI:
    
The pricing of step options under the nonlinear Black-Scholes model
SUN Yu-dong1, SHI Yi-min2, TONG Hong1
1. School of Science, Guizhou Minzu University, Guiyang 550025, China
2. Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an 710072, China
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  In this paper, the pricing problems of geometric average Asian options are studied under the nonlinear Black-Scholes model. Firstly, the partial differential equations for the Asian options are transformed into a series of parabolic equations with constant coefficients by the perturbation method of single-parameter. Secondly, the approximate pricing formulae of the geometric average Asian options are given by solving those parabolic equations with constant coefficients. Finally, the error estimates of the approximate solutions are given by using Green function.

Key wordsgeometric average Asian options      nonlinear Black-Scholes model      Green Function      error estimates     
Received: 26 September 2015      Published: 16 May 2018
CLC:  O211.6  
  F830.9  
Cite this article:

SUN Yu-dong, SHI Yi-min, TONG Hong. The pricing of step options under the nonlinear Black-Scholes model. Applied Mathematics A Journal of Chinese Universities, 2016, 31(3): 262-272.

URL:

http://www.zjujournals.com/amjcua/     OR     http://www.zjujournals.com/amjcua/Y2016/V31/I3/262


非线性Black-Scholes模型下阶梯期权定价

在非线性Black-Scholes模型下, 研究了阶梯期权定价问题. 首先利用多尺度方法, 将阶梯期权适合的偏微分方程分解成一系列常系数抛物方程; 其次通过计算这些常系数抛物型方程的解, 给出了修正障碍期权的近似定价公式; 最后利用Feymann-Kac公式分析了近似结论的误差估计.

关键词: 阶梯期权,  非线性Black-Scholes模型,  Feymann-Kac公式,  误差估计 
[1] ZHENG Cong, CHENG Xiao-liang, LIANG Ke-wei. Numerical analysis of inverse elastic problem with damage[J]. Applied Mathematics A Journal of Chinese Universities, 2016, 31(4): 476-490.