Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2019, Vol. 45 Issue (3): 365-375    DOI: 10.3785/j.issn.1008-9209.2018.03.282
Resource utilization & environmental protection     
Determination and ecological risk assessment of phthalic acid esters in marine sediments
Hongmei HU(),Tiejun LI(),Lu ZHANG,Qing HAO,Xiumei SUN,Yanjian JIN,Zhongzhen YING,Yuanming GUO
Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Marine Fishery Institute of Zhejiang Province, Zhoushan 316021, Zhejiang, China
Download: HTML   HTML (   PDF(1556KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

We proposed a new method for the determination of 16 phthalic acid esters (PAEs) in marine sediments using gas chromatography-mass spectrometry (GC-MS) combined with ultrasonic extraction and dispersive solid phase extraction cleanup. Moreover, the contents of PAEs in marine sediments of Sanmen Bay, Taizhou and waters of Nanji Island, Wenzhou were detected and their ecological risk was assessed. Under the optimized condition, the linearity of this method ranged from 1 to 1 000 μg/L, with regression coefficients ranging between 0.999 1 and 0.999 9. The limits of detection were in the rang of 0.10-0.25 μg/kg. The recoveries of spiked 16 PAEs at different concentration levels were in the range of 75%-116%, with relative standard deviations of 3.1%-7.2%. The results showed that the total concentration of phthalate esters ranged from 297.43 to 550.25 μg/kg. Diisobutyl phthalate (DIBP), di-n-butyl phthalate (DBP) and di (2-ethylhexyl) phthalate (DEHP) were the predominant compounds in all detected seafood, accounted for 88.7%-96.7% of the total PAEs. Marine sediment’s ecological risk was assessed with the methods of sediment quality guidline and risk quotient. The sediment quality guidline results showed the contents of PAEs in the sediments were all lower than the environmental risk limits, which indicated low ecological risk. The risk quotient values of PAEs were in the following order: DBP>DIBP>DEHP, and DBP was high risk to algae and medium risk to crustaceans and fish, and DIBP was medium risk to crustaceans, and DEHP was low risk to aquatic organisms. Overall, the risk of PAEs on algae was the largest, followed by crustaceans, minimal risk for fish, and the health risk of Sanmen Bay, Taizhou was slightly higher than that of waters of Nanji Island, Wenzhou.



Key wordsultrasonic extraction      dispersive solid phase extraction cleanup      gas chromatography-mass spectrometry      sediment      phthalic acid esters      ecological risk assessment     
Received: 28 March 2018      Published: 25 June 2019
CLC:  O 65  
  X 82  
Corresponding Authors: Tiejun LI     E-mail: huhm@zju.edu.cn;tiejun82_li@126.com
Cite this article:

Hongmei HU,Tiejun LI,Lu ZHANG,Qing HAO,Xiumei SUN,Yanjian JIN,Zhongzhen YING,Yuanming GUO. Determination and ecological risk assessment of phthalic acid esters in marine sediments. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(3): 365-375.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2018.03.282     OR     http://www.zjujournals.com/agr/Y2019/V45/I3/365


海洋沉积物中邻苯二甲酸酯类环境激素的测定及其生态风险评估

本研究建立了一种对海洋沉积物中16种邻苯二甲酸酯(phthalic acid esters, PAEs)的超声波萃取-分散固相萃取净化-气相色谱质谱检测法,并采用该方法对台州三门湾海域、温州南麂岛海域采集的样品进行检测,同时对其生态风险进行了评估。结果表明:该方法线性范围为1~1 000 μg/L,相关系数为0.999 1~0.999 9,检出限(3倍信噪比)为0.10~0.25 μg/kg,不同浓度的加标回收率为75%~116%,相对标准偏差(n=5)为3.1%~7.2%。组分分析表明,PAEs总量为297.43~550.25 μg/kg,以邻苯二甲酸二异丁酯(diisobutyl phthalate, DIBP)、邻苯二甲酸二丁酯(di-n-butyl phthalate, DBP)、邻苯二甲酸二-2-乙基己酯[di (2-ethylhexyl) phthalate, DEHP]为主,占PAEs总量的88.7%~96.7%。基于质量基准法的生态风险评估表明,各采样点的沉积物中PAEs含量均小于相应的环境风险限值,生态风险总体较低。基于风险商值法的评价表明:PAEs对水生生物的风险大小顺序为DBP>DIBP>DEHP,其中DBP对藻类呈高风险,对甲壳类和鱼类为中等风险,DIBP对甲壳类为中等风险,DEHP对水生生物均为低风险;PAEs对藻类的风险最大,其次为甲壳类,对鱼类的风险最小。总体上,台州三门湾海域PAEs对水生生物的风险略高于温州南麂岛海域。


关键词: 超声波萃取,  分散固相萃取净化,  气相色谱质谱法,  沉积物,  邻苯二甲酸酯,  生态风险评估 

峰号

Peak No.

化合物

Compound

保留时间

Retention time/min

定量离子

Quantitative ion (m/z)

定性离子

Qualitative ions (m/z)

1 DMP 8.354 163 77,135,194
2 DEP 9.793 149 121,177,222
3 DIBP 12.380 149 167,205,223
4 DBP 13.452 149 121,205,223
5 BMPP 14.076 149 104,167,251
6 DMEP 14.467 59 104,149,207
7 DNPP 15.162 149 104,219,237
8 DEEP 15.315 72 104,149,193
9 DNHP 16.751 149 104,167,251
10 BBP 17.643 149 91,104,206
11 DEHP 18.073 149 104,167,279
12 DBEP 18.145 149 85,101,193
13 DCHP 18.991 149 55,167,249
14 DNOP 19.714 149 167,261,279
15 DPhP 19.893 225 77,153,197
16 DNP 21.566 149 55,167,293
Table 1 Retention time, quantitative ions and qualitative ions of 16 PAEs
Fig. 1 Total ion current chromatogram of mixed standard solution of 16 PAEs
化合物Compound 种群Population 物种名Species name C PNE/(μg/g)
DNP 甲壳类Crustaceans Nitocra spinipes 0.732
DMP 藻类Algae Skeletonema costatum 0.134
甲壳类Crustaceans Americamysis bahia 0.098
鱼类Fish Cyprinodon variegatus 0.078
DEP 藻类Algae Skeletonema costatum 1.219
甲壳类Crustaceans Americamysis bahia 0.024
鱼类Fish Cyprinodon variegatus 0.093
DIBP 甲壳类Crustaceans Nitocra spinipes 0.178
DBP 藻类Algae Karenia brevis 0.022
甲壳类Crustaceans Nitocra spinipes 0.189
鱼类Fish Rivulus marmoratus 0.111
BBP 藻类Algae Skeletonema costatum 0.007
甲壳类Crustaceans Americamysis bahia 0.021
鱼类Fish Cyprinodon variegatus 0.012
DEHP 藻类Algae Karenia brevis 1 010 519.000
甲壳类Crustaceans Americamysis bahia 32.597
鱼类Fish Oryzias melastigma 32.597
Table 2 Predicted no-effect concentration (C PNE) of PAEs in marine sediments
Fig. 2 Comparison of extract efficiency for PAEs by different extractants
Fig. 3 Comparison of purifying effect for PAEs by different adsorbents
Fig. 4 Total ion current chromatograms of PAEs purified by different adsorbents

峰号

Peak No.

化合物

Compound

线性回归方程

Linear regression equation

相关系数

Correlation coefficient

检出限

Detection limit/(μg/kg)

1 DMP y=95.58x-43.52 0.999 3 0.10
2 DEP y=88.71x-62.64 0.999 2 0.10
3 DIBP y=136.25x-101.28 0.999 4 0.10
4 DBP y=162.48x-68.42 0.999 3 0.10
5 BMPP y=35.71x-11.05 0.999 1 0.15
6 DMEP y=32.45x-25.65 0.999 8 0.20
7 DNPP y=159.37x+17.80 0.999 3 0.10
8 DEEP y=24.21x-18.21 0.999 5 0.20
9 DNHP y=145.23x-118.51 0.999 2 0.10
10 BBP y=59.62x-42.87 0.999 3 0.15
11 DEHP y=77.01x-65.15 0.999 1 0.15
12 DBEP y=24.21x-15.65 0.999 6 0.25
13 DCHP y=93.28x-62.58 0.999 4 0.15
14 DNOP y=94.15x-79.51 0.999 9 0.20
15 DPhP y=107.12x-55.58 0.999 9 0.20
16 DNP y=60.12x-47.88 0.999 4 0.20
Table 3 Linear regression equation, correlation coefficient and detection limit of 16 PAEs

峰号

Peak No.

化合物

Compound

背景值Background

加标水平Spiked level

(5 μg/kg)

加标水平Spiked level

(50 μg/kg)

加标水平Spiked level

(250 μg/kg)

平均值

Mean/(μg/kg)

RSD/%

回收率

Recovery/%

RSD/%

回收率

Recovery/%

RSD/%

回收率

Recovery/%

RSD/%
1 DMP 10.42 3.2 101 3.6 75 3.4 81 3.2
2 DEP 1.32 4.3 104 4.5 85 3.3 92 3.5
3 DIBP 74.20 3.5 113 3.8 98 3.2 96 4.0
4 DBP 44.32 3.9 116 4.2 95 3.8 87 3.2
5 BMPP ND 112 3.8 105 3.6 101 3.9
6 DMEP ND 106 4.3 107 3.5 106 3.2
7 DNPP ND 112 4.2 106 3.1 98 3.2
8 DEEP ND 101 4.1 98 3.5 95 3.4
9 DNHP ND 111 3.2 113 4.4 103 3.2
10 BBP ND 107 3.5 110 3.9 98 3.1
11 DEHP 225.96 5.2 112 7.2 107 6.3 101 5.8
12 DBEP ND 105 4.4 103 4.7 99 3.7
13 DCHP ND 109 4.1 110 4.2 95 3.8
14 DNOP ND 110 3.6 86 3.5 92 3.5
15 DPhP ND 105 4.1 95 3.5 94 3.3
16 DNP ND 98 4.5 88 3.3 88 3.2
Table 4 Results of test for precision and recovery

峰号

Peak No.

化合物Compound 台州三门湾海域 Sanmen Bay, Taizhou 温州南麂岛海域Waters of Nanji Island, Wenzhou
样品1 Sample 1

样品2

Sample 2

样品3

Sample 3

样品1

Sample 1

样品2

Sample 2

样品3

Sample 3

方正汇总行∑16 PAEs 490.98 433.46 550.25 297.43 356.22 448.61
1 DMP 26.72 40.79 39.60 12.67 10.42 20.40
2 DEP 4.13 4.46 8.22 1.95 1.32 2.80
3 DIBP 98.79 95.72 200.92 69.03 74.20 93.12
4 DBP 78.21 53.88 78.46 35.13 44.32 63.14
5 BMPP ND ND ND ND ND ND
6 DMEP ND ND ND ND ND ND
7 DNPP ND ND ND ND ND ND
8 DEEP ND ND ND ND ND ND
9 DNHP ND ND ND ND ND ND
10 BBP ND ND ND ND ND ND
11 DEHP 277.98 235.01 216.12 177.97 225.96 265.84
12 DBEP ND ND ND ND ND ND
13 DCHP ND ND ND ND ND ND
14 DNOP ND ND ND ND ND ND
15 DPhP ND ND ND ND ND ND
16 DNP 5.15 3.60 6.93 0.68 ND 3.31
Table 5 Analysis results of the samplesμg/kg
Fig. 5 Composition of PAEs in marine sediments collected at different sampling points

采样点

Sampling point

种群

Population

风险商值(范围,平均值) Risk quotient (range, mean)
DMP DEP DIBP DBP DEHP

台州三门湾海域

Sanmen Bay, Taizhou

藻类

Algae

0.20~0.30, 0.27 0.003~0.007, 0.005 ND 2.45~3.57, 3.19 2.1×10-7~2.8×10-7, 2.4×10-7

甲壳类

Crustaceans

0.27~0.42, 0.36 0.17~0.34, 0.23 0.54~1.13, 0.74 0.29~0.42, 0.37 0.007~0.009, 0.007

鱼类

Fish

0.34~0.52, 0.45 0.04~0.09, 0.06 ND 0.49~0.71, 0.63 0.007~0.009, 0.007

温州南麂岛海域

Waters of Nanji Island, Wenzhou

藻类

Algae

0.08~0.15, 0.11 0.001~0.002, 0.002 ND 1.60~2.87, 2.16 1.8×10-7~2.6×10-7, 2.2×10-7

甲壳类

Crustaceans

0.11~0.21, 0.15 0.06~0.12, 0.08 0.39~0.52, 0.44 0.19~0.33, 0.25 0.005~0.008, 0.007

鱼类

Fish

0.13~0.26, 0.19 0.01~0.03, 0.02 ND 0.32~0.57, 0.43 0.005~0.008, 0.007
Table 6 Risk quotient (Q R) of five PAEs in marine sediments
Fig. 6  Q R for different aquatic organisms in five PAEs of marine sediments collected at different sampling points
[1]   林兴桃,王晓逸,任仁 .环境内分泌干扰物—邻苯二甲酸酯的研究.环境污染与防治,2003,25(5):286-292.
LIN X T , WANG X Y , REN R . Environmental endocrine disruptors: a study of phthalate esters. Environmental Pollution & Control, 2003,25(5):286-292. (in Chinese with English abstract)
[2]   AMIR S , HAFIDI M , MERLINA G , et al . Fate of phthalic acid esters during composting of both lagooning and activated sludges. Process Biochemistry, 2005,40(6):2183-2190.
[3]   王昱文,柴淼,唐阵武,等 .我国环境中邻苯二甲酸酯污染特征及其生态风险.安徽农业科学,2015,43(25):258-260,264.
WANG Y W , CAI M , TANG Z W , et al . Contamination status and ecological risks of phthalate esters (PAEs) in the environment of China. Journal of Anhui Agricultural Sciences, 2015,43(25):258-260,264. (in Chinese with English abstract)
[4]   LI R L , LIANG J , GONG Z B , et al . Occurrence, spatial distribution, historical trend and ecological risk of phthalate esters in the Jiulong River, Southeast China. Science of the Total Environment, 2017,580:388-397.
[5]   刘敏,林玉君,曾锋,等 .城区湖泊表层沉积物中邻苯二甲酸酯的组成与分布特征.环境科学学报,2007,27(8):1377-1383.
LIU M , LIN Y J , ZENG F , et al . The distribution and composition of phthalate esters in the sediment of urban lakes in Guangzhou. Acta Scientiae Circumstantiae, 2007,27(8):1377-1383. (in Chinese with English abstract)
[6]   WANG J , BO L J , LI L N . Occurrence of phthalate esters in river sediments in areas with different land use patterns. Science of the Total Environment, 2014,500/501:113-119.
[7]   SUN J Q , HUANG J , ZHANG A P . Occurrence of phthalate esters in sediments in Qiantang River, China and inference with urbanization and river flow regime. Journal of Hazardous Materials, 2013,248/249:142-149.
[8]   曾锋,陈丽旋,崔昆燕,等 .硅胶-氧化铝层析柱-气相色谱法测定沉积物中邻苯二甲酸酯类有机物.分析化学,2005,33(8):1063-1067.
ZENG F , CHEN L X , CUI K Y , et al . Determination of phthalate esters in sediment samples by silica gel-alumina column separation and gas chromatography. Chinese Journal of Analytical Chemistry, 2005,33(8):1063-1067. (in Chinese with English abstract)
[9]   曹攽,马军,李云木子,等 .索氏提取-液相色谱法测定土壤中邻苯二甲酸酯类物质.地质学刊,2011,35(1):73-77.
CAO B , MA J, LI Y M Z , et al . Determination of phthalic acid esters in soils by Soxhlet technology-high precision liquid chromatography. Journal of Geology, 2011,35(1):73-77. (in Chinese with English abstract)
[10]   杜娴,罗固源,许晓毅 .长江重庆段两江水相、间隙水和沉积物中邻苯二甲酸酯的分布与分配.环境科学学报,2013,33(2):557-562.
DU X , LUO G Y , XU X Y . Distribution and partition of phthalate esters in water phase, pore water and sediments from Chongqing section of the Yangtze River. Acta Scientiae Circumstantiae, 2013,33(2):557-562. (in Chinese with English abstract)
[11]   张海光,孙国帅,孙磊,等 .典型覆膜作物土壤中邻苯二甲酸酯污染的初步研究.中国环境监测,2013,29(4):60-63.
ZHANG H G , SUN G S , SUN L , et al . Preliminary study on phthalic acid esters pollution of typical plastic mulched crops soils. Environmental Monitoring in China, 2013,29(4):60-63. (in Chinese with English abstract)
[12]   彭祎,王璐,罗铭,等 .气相色谱-串联质谱法测定蔬菜和土壤中17种邻苯二甲酸酯.理化检验:化学分册,2015,51(11):1505-1510.
PENG Y , WANG L , LUO M , et al . GC-MS/MS determination of 17 phthalic acid esters in vegetables and soils. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2015,51(11):1505-1510. (in Chinese with English abstract)
[13]   张渝,张新申,杨坪,等 .分散式固相萃取净化-气相色谱-质谱联用测定土壤中的邻苯二甲酸酯.分析化学,2009,37(10):1535-1538.
ZHANG Y , ZHANG X S , YANG P , et al . Dispersive solid phase extraction clean-up and gas chromatography-mass spectrometry for determination of phthalate esters in soil samples. Chinese Journal of Analytical Chemistry, 2009,37(10):1535-1538. (in Chinese with English abstract)
[14]   魏丽琼,呼世斌,刘书慧,等 .QuEChERS-高效液相色谱法测定土壤中邻苯二甲酸酯.环境工程,2016(5):148-151.
[15]   WEI L Q , HU S B , LIU S H , et al . Determination of phthalic acid esters in soil by QuEChERS-high performance liquid chromatography. Environmental Engineering, 2016(5):148-151. (in Chinese with English abstract)
[16]   张万峰,王雅辉 .沉积物中邻苯二甲酸二甲酯类的GC/MS测定.环境科学导刊,2009,28(5):75-76.
ZHANG W F , WANG Y H . Determination of dimethyl (o-) phthalate in the sediment by GC/MS. Environmental Science Survey, 2009,28(5):75-76. (in Chinese with English abstract)
[17]   闫蕊,邵明媛,孙长华,等 .加速溶剂萃取-高效液相色谱串联质谱法测定土壤中邻苯二甲酸酯.分析化学,2014,42(6):897-903.
YAN R , SHAO M Y , SUN C H , et al . Determination of 11 phthalic acid esters in soil by accelerated solvent extraction-liquid chromatography tandem mass spectrometry. Chinese Journal of Analytical Chemistry, 2014,42(6):897-903. (in Chinese with English abstract)
[18]   孟平蕊,王西奎,徐广通,等 .土壤中邻苯二甲酸酯的净化分离方法研究.山东建材学院学报,1996,10(2):15-18.
MENG P R , WANG X K , XU G T , et al . Study on separation and purify method of phthalate esters in soil. Journal of Shandong Institute of Building Materials, 1996,10(2):15-18. (in Chinese with English abstract)
[19]   白利涛,张占恩 .超声萃取-C18柱净化-GC/MS法测定土壤中邻苯二甲酸酯类污染物.光谱实验室,2010,27(5):1705-1709.
BAI L T , ZHANG Z E . Determination of phthalate esters in soil by ultrasonic extraction-C18 column cleanup-GC/MS. Chinese Journal of Spectroscopy Laboratory, 2010,27(5):1705-1709. (in Chinese with English abstract)
[20]   李红,田福林,任雪冬,等 .气相色谱-串联质谱法测定土壤中的邻苯二甲酸酯.色谱,2011,29(6):563-566.
LI H , TIAN F L , REN X D , et al . Determination of phthalic acid esters in soil by gas chromatography-tandem mass spectrometry. Chinese Journal of Chromatography, 2011,29(6):563-566. (in Chinese with English abstract)
[21]   杨丹丹,冯丽娟,李孟芳,等 .东海表层沉积物中邻苯二甲酸酯的分布特征.中国海洋大学学报(自然科学版),2016,46(3):74-81.
YANG D D , FENG L J , LI M F , et al . Occurrence and distribution characteristics of phthalic acid esters (PAEs) in surface sediments of the East China Sea. Periodical of Ocean University of China, 2016,46(3):74-81. (in Chinese with English abstract)
[22]   张泽明,张洪海,李建龙,等 .固相微萃取-气相色谱-质谱联用测定海水与沉积物中邻苯二甲酸酯类污染物.分析化学,2017,45(3):348-356.
ZHANG Z M , ZHANG H H , LI J L , et al . Determination of phthalic acid esters in seawater and sediment by solid-phase microextraction and gas chromatography-mass spectrometry. Chinese Journal of Analytical Chemistry, 2017,45(3):348-356. (in Chinese with English abstract)
[23]   张露,胡红美,刘奇鹰,等 .气质联用测定海洋沉积物中15种邻苯二甲酸酯的含量.浙江海洋大学学报(自然科学版),2018,37(1):30-36.
ZHANG L , HU H M , LIU Q Y , et al . Determination of 15 phthalic acid esters in marine sediments by gas chromatography-mass spectrometry detection. Journal of Zhejiang Ocean University (Natural Science), 2018,37(1):30-36. (in Chinese with English abstract)
[24]   张露 .浙江沿岸海洋沉积物和生物体中邻苯二甲酸酯类环境激素检测技术研究及健康风险评估.浙江,舟山:浙江海洋大学,2018.
ZHANG L . Phthalate ester environmental hormone detection technology and health risk assessment in coastal marine sediments and organisms in Zhejiang Province. Zhoushan, Zhejiang: Zhejiang Ocean University, 2018. (in Chinese with English abstract)
[25]   成昊,张丽君,张磊,等 .基质固相分散萃取-分散液相微萃取-气相色谱/质谱联用法测定土壤中的邻苯二甲酸酯.分析试验室,2015,34(5):574-578.
CHENG H , ZHANG L J , ZHANG L , et al . Determination of five phthalic acid esters in soil by matrix solid phase dispersion extraction-dispersive liquid-liquid microextraction-gas chromatography-mass spectrometry. Chinese Journal of Analysis Laboratory, 2015,34(5):574-578. (in Chinese with English abstract)
[26]   王连珠,王瑞龙,刘溢娜,等 .分散固相萃取-气相色谱-质谱法测定罐头食品中6种邻苯二甲酸酯.理化检验:化学分册,2008,44(6):502-506.
WANG L Z , WANG R L , LIU Y N , et al . GC-MS determination of phthalates in canned food with dispersive solid phase extraction. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2008,44(6):502-506. (in Chinese with English abstract)
[27]   朱莉萍,朱涛,马运平,等 .分散固相萃取-气相色谱-质谱法测定鸡肉香精中17种邻苯二甲酸酯.食品安全质量检测学报,2014,5(2):393-400.
ZHU L P , ZHU T , MA Y P, et al . Determination of 17 kinds of phthalate esters in chicken flavor by dispersive solid phase extraction coupled with gas chromatography-mass spectrometry. Journal of Food Safety & Quality, 2014,5(2):393-400. (in Chinese with English abstract)
[28]   邓莉,郝学财 .分散固相萃取技术分析油脂类食品中塑化剂含量.分析化学,2013,41(7):1037-1043.
DENG L , HAO X C . Determination of phthalic acid esters in fat-containing foods by dispersive solid phase extraction. Chinese Journal of Analytical Chemistry, 2013,41(7):1037-1043. (in Chinese with English abstract)
[29]   胡红美,郭远明,郝青,等 .超声波萃取-分散固相萃取净化-气相色谱电子捕获法测定土壤或底泥中的多氯联苯.分析化学,2016,44(1):88-94.
HU H M , GUO Y M , HAO Q , et al . Determination of polychlorinated biphenyls in soil or sediment by gas chromatography-electron capture detection combined with ultrasonic extraction and dispersive solid phase extraction cleanup. Chinese Journal of Analytical Chemistry, 2016,44(1):88-94. (in Chinese with English abstract)
[30]   WEZEL A P VAN , VLAARDINGEN P VAN , POSTHUMUS R , et al . Environmental risk limits for two phthalates, with special emphasis on endocrine disruptive properties. Ecotoxicology and Environmental Safety, 2000,46(3):305-321.
[31]   Department of Ecology of Washington . Guidance on the Development of Sediment Sampling and Analysis Plans Meeting the Requirements of the Sediment Management Standards. Washington DC, US: Ecology Publication, 2003:173-204.
[32]   SANCHEZ-BAYO F , BASKARAN S , KENNEDY I R . Ecological relative risk (EcoRR): another approach for risk assessment of pesticides in agriculture. Agriculture, Ecosystem & Environment, 2002,91(1/2/3):37-57.
[33]   Union European . Technical Guidance Document on Risk Assessment in Support of Commission Directive 93/67/EEC on Risk Assessment for New Notified Substances Commission Regulation (EC) No. 1488/94 on Risk Assessment for Existing Substances Directive 98/8/EC of the European Parliament and of the Council Concerning the Placing of Biocidal Products on the Market. Ispra, Italy: Environmental Chemicals Bureau, 2003.
[1] Junxing LI,Yujuan ZHONG,Jianning LUO,Xiaoli HE,Hao GONG,Haibin WU,Shijuan YAN,Hexun HUANG. Detection of volatile flavor compounds in leaf of Xiangyu pumpkin using headspace solid-phase microextraction-gas chromatography-mass spectrometry[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(2): 175-180.
[2] . Determination method for trace polycyclic aromatic hydrocarbons in paddy soils[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(6): 766-774.
[3] GU Chenggang, XIANG Leilei, REN Wenjie, WU Wei, LIU Chang, FANG Guodong, WANG Fang. Multi- interfacial migration/transformation and effects of phthalic acid esters in soils: A review[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(6): 700-712.
[4] Yang Shaohui, Yang Jingping, Wang Hua, Zhao Xing. Phosphorus adsorption characteristic of sediments in drainage ditch of paddy field in southern hilly tea field watershed[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(4): 458-464.
[5] Xu Yuanjun, He Jing, Jia Lingyan, Wu Yuanyuan, Tu Youying. Differentiation of aroma compositions in different regions and special varieties of black tea[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(03): 323-330.
[6] HUANG Li dong,CHAI Ru shan,ZONG Xiao bo,ZHANG Yong song. Characteristics of phosphorus sorption kinetics on sediments at different initial phosphorus concentrations[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(1): 91-97.
[7] CHEN Ru- hai1,ZHAN Liang- tong1,CHEN Yun- min1,HU Hong-zhi2. Vertical distributions of heavy metals in bottom sediment in Xi-xi national wetland .[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2010, 36(5): 578-584.
[8] ZHU Huan-Chao, SHEN Jian-Guo, WANG Zhao-De, LIN Yuan, ZHANG Zhi-Jian. [J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2009, 35(4): 450-459.