Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2019, Vol. 45 Issue (1): 95-101    DOI: 10.3785/j.issn.1008-9209.2018.02.091
Resource utilization & environmental protection     
Optimization of culture conditions of microalgae in an algal-bacterial system by response surface method
Longzao LUO1,2(),Fanjian ZENG2,Guangming TIAN2()
1. School of Chemistry and Environmental Science, Shangrao Normal University, Shangrao 334001, Jiangxi, China
2. College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
Download: HTML   HTML (   PDF(793KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

An algal-bacterial system was constructed to explore the effects of culture conditions on the growth of microalgae. On the basis of the results of single factor test, three factors including the agitating rate, the initial inoculation ratio of microalgae and bacteria, and the organic load of the wastewater were optimizated by using the response surface method. The results showed that the microalgal growth was significantly affected by airtight condition, agitation rate, initial inoculation ratio and organic load of the culture system, and the microalgae grew better in the open culture system. The optimum condition by the response surface optimization was as follows: agitating rate of 1 574.29 r/min, inoculation ratio 150∶1 of bacteria-alga and organic load (chemical oxygen demand, COD) of 3 676.02 mg/L. After seven days of culture under the optimimum condition, the biomass of microalgae was 5.68 g/L, which was in accordance with the theoretically predicted value (5.69 g/L). The above results can lay a scientific basis for improving the resource recovery efficiency from wastewater by algal-bacterial system.



Key wordsmicroalgae      algal-bacterial system      culture condition      response surface method      optimization     
Received: 09 February 2018      Published: 28 March 2019
CLC:  X 703  
Corresponding Authors: Guangming TIAN     E-mail: luolongzao@sina.com;gmtian@zju.edu.cn
Cite this article:

Longzao LUO,Fanjian ZENG,Guangming TIAN. Optimization of culture conditions of microalgae in an algal-bacterial system by response surface method. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(1): 95-101.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2018.02.091     OR     http://www.zjujournals.com/agr/Y2019/V45/I1/95


藻-菌系统中微藻生长条件的响应面法优化

人工构建藻-菌系统,探讨培养系统密闭情况及搅拌速率、藻-菌初始接种比例和废水有机负荷对系统中微藻生长的影响。在单因素试验结果的基础上,利用响应面法对搅拌速率、藻-菌初始接种比例和废水有机负荷3个因素进行优化。结果表明,培养系统密闭情况及搅拌速率、藻-菌初始接种比例和废水有机负荷均显著影响系统中微藻的生长,其中培养系统敞开更有利于微藻的生长。经响应面优化的最佳培养条件为:搅拌速率1 574.29 r/min,菌-藻接种比例150∶1,有机负荷(以化学需氧量计)3 676.02 mg/L。在此条件下培养7 d后,微藻的生物量为5.68 g/L,与理论预测值(5.69 g/L)基本吻合。本研究结果可为提高藻-菌系统对废水的资源化利用效率提供科学依据。


关键词: 微藻,  藻-菌系统,  培养条件,  响应面法,  优化 
因素Factor 水平Level
-1 0 1

X 1菌-藻接种比例

Bacteria-alga inoculation ratio

50∶1 100∶1 150∶1

X 2搅拌速率

Agitating rate/(r/min)

1 250 1 500 1 750

X 3有机负荷

Organic load/(mg/L)

1 000 3 000 5 000
Table 1 Factors and levels used in Box-Behnken design
Fig. 1 Microalgal growth situation in the open and closed algal-bacterial culture systems
Fig. 2 Microalgal growth situation under different bacteria-microalgae inoculation ratios in the algal-bacterial culture system
Fig. 3 Effects of agitating rate on microalgal growth in the algal-bacterial culture system
Fig. 4 Effects of organic load on microalgal growth in the algal-bacterial culture system

处理号

Treatment No.

X 1菌-藻接种比例

Bacteria-alga inoculation ratio

X 2搅拌速率

Agitating rate

X 3有机负荷

Organic load

生物量Biomass/(g/L)
测定值Observed value 预测值Predicated value
1 1 0 -1 3.13 3.45
2 -1 -1 0 3.74 3.89
3 0 1 -1 3.14 2.97
4 1 1 0 5.82 5.68
5 0 -1 -1 3.42 3.09
6 -1 0 1 3.70 3.38
7 0 -1 1 3.92 4.09
8 0 1 1 4.46 4.80
9 1 -1 0 5.68 5.69
10 1 0 1 5.45 5.26
11 0 0 0 5.14 5.26
12 -1 1 0 4.51 4.50
13 0 0 0 5.61 5.26
14 0 0 0 5.27 5.26
15 0 0 0 5.14 5.26
16 0 0 0 5.15 5.26
17 -1 0 -1 2.18 2.36
Table 2 Experimental design and results for Box-Behnken

变异来源

Source

平方和

Sum of squares

自由度

Degree of freedom

均方差

Mean square

F

Fvalue

P

Pvalue

模型Model 18.11 9 2.01 18.34 0.000 5**

X 1菌-藻接种比例

Bacteria-alga inoculation ratio

4.43 1 4.43 40.35 0.000 4**

X 2搅拌速率

Agitating rate

0.17 1 0.17 1.58 0.249 2

X 3有机负荷

Organic load

4.01 1 4.01 36.52 0.000 5**
X 1 X 2 0.098 1 0.098 0.89 0.376 6
X 1 X 3 0.16 1 0.16 1.41 0.273 2
X 2 X 3 0.17 1 0.17 1.52 0.257 2
X 1 2 0.21 1 0.21 1.88 0.212 2
X 2 2 0.042 1 0.042 0.38 0.555 2
X 3 2 8.56 1 8.56 77.98 <0.000 1**
残差Residual 0.77 7 0.11
失拟项Lack of fit 0.60 3 0.20 4.89 0.079 6
纯误差Pure error 0.16 4 0.041
总和 Cor total 18.88 16
Table 3 Analysis of variance of the regression model for microalgal biomass
[1]   PRAGYA N , PANDEY K K , SAHOO P K . A review on harvesting, oil extraction and biofuels production technologies from microalgae. Renewable & Sustainable Energy Reviews, 2013,24(10):159-171.
[2]   赵立欣,宋成军,董保成,等 .基于微藻养殖的沼液资源化利用与高价值生物质生产耦合技术研究.安全与环境学报,2012,12(3):61-65.
ZHAO L X , SONG C J , DONG B C , et al . On the microalgae cultivation based coupling of biogas fermentative liquid-resource utilization and high-quality biomass production. Journal of Safety and Environment, 2012,12(3):61-65. (in Chinese with English abstract)
[3]   李超,冯玉杰,张大伟,等 .以市政污水为底物的微藻油脂积累和碳流分析.可再生能源,2012,30(6):93-96.
LI C , FENG Y J , ZHANG D W , et al . Microalgae lipid accumulation and carbon flux analysis based on municipal wastewater used as medium. Renewable Energy Resources, 2012,30(6):93-96. (in Chinese with English abstract)
[4]   程海翔 .一株栅藻的分离培养及其应用于养猪废水处理的潜力研究.杭州:浙江大学,2013.
CHENG H X . Research on isolation and cultivation of a new microalgae and the potential of its application for treating piggery wastewater. Hangzhou: Zhejiang University, 2013. (in Chinese with English abstract)
[5]   PRANDINI J M , DA S M, MEZZARI M P , et al . Enhancement of nutrient removal from swine wastewater digestate coupled to biogas purification by microalgae Scenedesmus spp. Bioresource Technology, 2015,202:67-75.
[6]   WANG Y , GUO W Q , YEN H W, et al . Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simul-taneous nutrient/COD removal and carbohydrate production. Bioresource Technology, 2015,198:619-625.
[7]   WANG J H , ZHANG T Y , DAO G H, et al . Microalgae-based advanced municipal wastewater treatment for reuse in water bodies. Applied Microbiology and Biotechnology, 2017,101(7):1-17.
[8]   RIEDEL T E , BERELSON W M , NEALSON K H , et al . Oxygen consumption rates of bacteria under nutrient-limited conditions. Applied and Environmental Microbiology, 2013,79(16):4921-4931.
[9]   GUO Z , TONG W Y . The interactions between Chlorella vulgaris and algal symbiotic bacteria under photoautotrophic and photoheterotrophic conditions. Journal of Applied Phycology, 2014,26(3):1483-1492.
[10]   RAMANAN R , KIM B H, CHO D H, et al . Algae-bacteria interactions: evolution, ecology and emerging applications. Biotechnology Advances, 2016,34(1):14-29.
[11]   SUBASHCHANDRABOSE S R , RAMAKRISHNAN B , MEGHARAJ M , et al . Consortia of cyanobacteria/microalgae and bacteria: biotechnological potential. Biotechnology Advances, 2011,29(6):896.
[12]   RISGAARDPETERSEN N , NICOLAISEN M H , REVSBECH N P , et al . Competition between ammonia-oxidizing bacteria and benthic microalgae. Applied and Environmental Microbiology, 2004,70(9):5528-5537.
[13]   CHENG H X , TIAN G M . Identification of a newly isolated microalga from a local pond and evaluation of its growth and nutrients removal potential in swine breeding effluent. Desalination and Water Treatment, 2013,51(13/14/15):2768-2775.
[14]   WATANABE K , TAKIHANA N , AOYAGI H , et al . Symbiotic association in Chlorella culture. FEMS Microbiology Ecology, 2005,51(2):187-196.
[15]   王瑞民 .栅藻(Scenedesmus obliquus)藻菌共生体系的构建及调控.北京:中国科学院大学,2015.
WANG R M . Construction and regulation of artificial consortia of Scenedesmus obliauus and microorganism. Beijing: University of Chinese Academy of Science, 2015. (in Chinese with English abstract)
[16]   郭艳梅 .新型藻菌生物转盘反应器的研制.哈尔滨:哈尔滨工业大学,2010.
GUO Y M . Development of novel algal-bacterial symbiotic rotating biological contactor. Harbin: Harbin Institute of Technology, 2010. (in Chinese with English abstract)
[17]   WATANABE Y . Design and experimental practice of photobioreactor incorporating microalgae for efficient photosynthetic CO2 fixation performance. Studies in Surface Science and Catalysis, 2004,153:445-452.
[18]   SHU C H , TSAI C C , CHEN K Y , et al . Enhancing high quality oil accumulation and carbon dioxide fixation by a mixed culture of Chlorella sp. and Saccharomyces cerevisiae. Journal of the Taiwan Institute of Chemical Engineers, 2013,44(6):936-942.
[19]   CAMACHO F G , GóMEZ A C , SOBCZUK T M , et al . Effects of mechanical and hydrodynamic stress in agitated, sparged cultures of Porphyridium cruentum . Process Biochemistry, 2000,35(9):1045-1050.
[20]   BERDALET E . Effects of turbulence on the marine dinoflagellate Gymnodinium nelsonii . Journal of Phycology, 2004,28:267-272.
[21]   SULLIVAN J M , SWIFT E , DONAGHAY P L , et al . Small-scale turbulence affects the division rate and morphology of two red-tide dinoflagellates. Harmful Algae, 2003,2(3):183-199.
[22]   HONDZO M , LYN D . Quantified small-scale turbulence inhibits the growth of a green alga. Freshwater Biology, 1999,41(1):51-61.
[23]   SULLIVAN J M , SWIFT E . Effects of small-scale turbulence on net growth rate and size of ten species of marine dinoflagellates. Journal of Phycology, 2003,39(1):83-94.
[24]   沈宏,周培疆 .环境有机污染物对藻类生长作用的研究进展.水生生物学报,2002,26(5):529-535.
SHEN H , ZHOU P J . Advance in the studies on effect of environmental organic pollutants on the algae growth. Acta Hydrobiologica Sinica, 2002,26(5):529-535. (in Chinese with English abstract)
[25]   PERONA E , MARCO E , ORúS M I . Alteration of dinitrogen fixation and metabolism in cyanobacterium Anabaena PCC 7119 by phosph amidon. Environmental and Experimental Botany, 1991,31(4):479-488.
[26]   唐学玺,李永祺 .对硫磷对三角褐指藻核酸和蛋白质合成动态的影响.生态学报,2000,20(4):598-600.
TANG X X , LI Y Q . The effect of parathion on the synthesis of protein and nucleic acid in Phaeodactylum tricornutum . Acta Ecological Sinica, 2000,20(4):598-600. (in Chinese with English abstract)
[27]   谢荣,唐学玺,李永祺,等 .丙溴磷影响海洋微藻生长机制的初步研究.环境科学学报,2000,20(4):473-477.
XIE R , TANG X X , LI Y Q , et al . Preliminary study on mechanism of profenofos on marine microalgae proliferation. Acta Scientiae Circumstantiae, 2000,20(4):473-477. (in Chinese with English abstract)
[1] WU Wenjie, WU Chongyou. Optimization for header parameters of rape combine harvester[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(4): 481-489.
[2] XU Yimeng, ZHU Xiaowen, LIU Zhijie, HU Yaohua, GU Fang. Field simulation and structure optimization of the air conveying system in air assisted sprayer based on computer fluid dynamics[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(4): 451-458.
[3] WANG Yongwei, HE Zhuoliang, CHEN Jun, WANG Jun, ZHANG Lingyue, TANG Yanhai. Optimization on structure and parameters of a collision-pneumatic hybrid rice pollination machine[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(1): 98-106.
[4] XIA Xue, GU Jinhua, LIU Dan, WU Yimei, TIAN Yuxiao, CHEN Qing, ZHANG Fen, TANG Haoru, SUN Bo. Optimization of chromosome preparation and karyotype analysis of yellow-flower Chinese kale[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(5): 527-.
[5] LIU Li, ZENG Zhen, FANG Ping. Optimization of a culture medium for Bacillus subtilis based on monosodium glutamate wastewater[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(04): 485-494.
[6] Zhang Jingping*, Zhu Jianxi, Sun Teng. Design and parameter optimization of portable tree transplanting machine.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(2): 231-236.
[7] Hu Jinbing, Wang Jun*, Hu Ying. Optimization of parameters for sugarcane lifter based on simulation of virtual prototype[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(1): 111-118.
[8] MA Xiaokui1*, JIANG Hua1, LI Junzhi2, CHEN Yong3,HE Xiaojing1.
Optimization of medium components for the production of exopolysaccharide by Lycoperdon pyriforme Schaeff.: Pers. using response surface methodology
[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2013, 39(5): 481-488.
[9] CAO Fang, YU Xiu-mei, GUO Juan-li, YANG Xiao-yao, PAN Kang-cheng*. Optimization of culture conditions for bioflocculant-producing Bacillus megaterium MBFF6 and its chemical characteristics[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(6): 669-674.
[10] CHEN Shao-yuan, Lü Zhen-er, DONG Feng-li, MAO Bi-zeng. Optimization of chlorophyll extraction from mulberry leaves using response surface methodology[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(6): 725-713.
[11] . Process optimization for phosphorus removal with ferric salt by response surface methodology[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(5): 623-628.
[12] WU Yifei1, YAO Xiaohong1, SUN Hong2, WANG Xin1, TANG Jiangwu1. Optimization of solidstate fermentation conditions of rapeseed meal using response surface analysis combined with principal component analysis[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(4): 490-496.
[13] SUN Zhe1, QIU Tao1, YUAN Ruyue1, QIAN Meishuang1, XIAO Hourong2, YE Ming1. Deproteinization method and optimal condition of crude polysaccharide from Lachnum sp[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(4): 519-523.
[14] LIN Meng‐nan,SU Ping,YING Li‐ya,GAO Hong‐jian. Optimization of microwave extraction process of essential oil from Perilla f rutescens by response surface methodology and its chemical composition analysis .[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2011, 37(6): 677-683.
[15] ZHANG Rui‐qin,GUAN Bin,KONG Qing,YOU Yong,WU Ji‐qin,WEI Qun. Study on astaxanthin accumulation by heterotrophic transformation in Haematococcus pluvialis[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2011, 37(6): 624-630.