Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2019, Vol. 45 Issue (1): 75-84    DOI: 10.3785/j.issn.1008-9209.2017.12.181
Resource utilization & environmental protection     
Temporal-spatial change characteristics of sunshine duration in Tibet based on spatial interpolation technique and its influence factors
Haijing YU1(),Tingfu CHEN2,Qingguo ZHANG3(),Ning ZHANG1,Shijie DONG1,Mengdi CHENG1
1. School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
2. Disaster Reduction and Disaster Preparedness Center of Jiangxi, Nanchang 330036, China
3. School of Science, Anhui Agricultural University, Hefei 230036, China
Download: HTML   HTML (   PDF(1647KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to exploit and use solar energy resources, analyze the influence of climate change on sunshine duration, a spatial interpolation model was evaluated by various similarity coefficients and the optimal model was selected to study the spatial distribution characteristics of Tibet sunshine duration. Combined with sunshine duration of 52 meteorological stations in Tibet and the surrounding area during 1971 to 2015, the temporal change characteristics of sunshine duration in Tibet was analyzed. Results showed that the interpolation algorithm of Kriging spherical model could simulate Tibet sunshine duration quite well. The Tibet sunshine duration generally had a change tendency of gradual increase from east to west and from south to north. The Tibet’s annual sunshine duration had a decline tendency, and abnormal years mainly appeared in the 1980s. According to the topographic features of Tibet, the sunshine duration in the four areas was studied, which were Himalaya High Mountain (HHM), Eastern Tibet High Mountain (ETHM), Southern Tibet Lake Basin Valley Area (STLBA), Northern Tibet Plateau (NTP). The results showed that the annual sunshine duration of ETHM had a slight upward trend, other three areas showed a downward trend. The seasonal changes of sunshine duration in the four areas were as follows: In spring, NTP’s sunshine duration showed an increasing tendency. In summer, the sunshine duration of all the four areas showed a decline tendency. In autumn, the sunshine duration of all regions showed an increasing tendency except for NTP. In winter, the sunshine duration of all the four areas showed an increasing tendency. It was concluded that precipitation had the greatest impact on sunshine duration by analysis of four meteorological factors.



Key wordsTibet      spatial interpolation      sunshine duration      temporal-spatial change characteristics      influence factors     
Received: 18 December 2017      Published: 28 March 2019
CLC:  P 4  
Corresponding Authors: Qingguo ZHANG     E-mail: yuhaijing93@163.com;qgzhang@ahau.edu.cn
Cite this article:

Haijing YU,Tingfu CHEN,Qingguo ZHANG,Ning ZHANG,Shijie DONG,Mengdi CHENG. Temporal-spatial change characteristics of sunshine duration in Tibet based on spatial interpolation technique and its influence factors. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(1): 75-84.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2017.12.181     OR     http://www.zjujournals.com/agr/Y2019/V45/I1/75


基于空间插值技术的西藏日照时数时空变化特征及其影响因素

为开发利用西藏地区太阳能资源,分析气候变化对日照时数的影响,本文运用多种相似系数评价空间插值模型,进而选用最优模型研究西藏日照时数的空间分布特征,并结合1971—2015年西藏及其周围地区共52个气象站点的日照时数,分析西藏日照时数的时间变化特征。结果表明:普通克里金(球面函数模型)的插值算法能较好地模拟西藏日照时数。西藏日照时数总体由东向西、由南向北呈现逐渐增加的变化趋势。西藏的年日照时数呈现下降趋势,异常年份主要出现在20世纪80年代。根据地形特征,对西藏喜马拉雅高山区、藏东高山深谷区、藏南山原湖盆谷地区和藏北高原区4个地区的日照时数研究表明,藏东高山深谷区的年日照时数有微弱的上升趋势,其余3个地区都呈下降趋势。这4个地区日照时数的季节变化为:春季藏北高原区的日照时数呈上升趋势;夏季4个地区日照时数都呈下降趋势;秋季除藏北高原区以外日照时数都呈上升趋势;冬季4个地区日照时数都呈上升趋势。通过分析4种气象因素对日照时数的影响,结果表明降水量的影响最大。


关键词: 西藏,  空间插值,  日照时数,  时空变化特征,  影响因素 
Fig. 1 Error of predicted and measured values

插值模型

Interpolation models

R2LMBEMAERMSE
普通克里金法 OK球面函数模型Spherical model0.6830.832-0.9022.4177.237
三角函数模型Trigonometric model0.6190.794-0.7662.4717.851
指数函数模型Exponential model0.6500.813-0.5412.4487.469
高斯函数模型Gaussian model0.6670.822-0.9222.4237.346
线性函数模型Linear model0.6100.788-0.7502.4817.947
反距离加权法 IDW0.6440.8090.0312.4197.493
样条函数法 SFM规则样条函数Rule spline function0.3590.614-1.4953.18612.402
张力样条函数Tension spline function0.5960.779-0.6202.7258.847
Table 1 Error of different spatial interpolation models
Fig. 2 Variation of monthly sunshine duration
Fig. 3 Variation of seasonal sunshine duration
Fig. 4 Variation of annual sunshine duration

区域

Region

变化率

Rate of change/

(h/10 a)

线性趋势

Linear trend

相关系数

Correlation

coefficient

藏北高原区NTP-10.05下降-0.18
藏南山原湖盆谷地区STLBA-21.74下降-0.44
喜马拉雅高山区HHM-16.99下降-0.29
藏东高山深谷区ETHM2.48上升0.05
西藏Tibet-20.15下降-0.44
Table 2 Long term variation of sunshine duration

参量

Parameter

相关系数

Correlation

coefficient

变化率

Rate of change/

(h/10 a)

气压

Air pressure/kPa

-0.5740.69

水汽压

Vapour pressure/hPa

-0.6746.13

降水量

Precipitation/mm

-0.76446.50

风速

Wind speed/(m/s)

-0.1780.02
Table 3 Correlation coefficients between sunshine duration and meteorological factors
Fig. 5 Variation trend between sunshine duration and meteorological factors
[1]   SOLOMONS, QIND H, MANNINGM, et al. Climate Change 2007: The Physical Science Basis. Cambridge, UK: Cambridge University Press, 2007:95-123.
[2]   STANHILLG, COHENS. Global dimming: a review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences. Agricultural and Forest Meteorology, 2001,107(4):255-278.
[3]   张菡,郑昊,王明田,等.基于GIS的秋季连阴雨对农业生产影响的风险评估:以四川省盆地区为例.应用生态学报,2017,28(8):2569-2576.
ZHANGH, ZHENGH, WANGM T, et al. GIS-based risk assessment of the impact of continuous rain in autumn on agricultural production: a case study of the basin area in Sichuan Province, China. Chinese Journal of Applied Ecology, 2017,28(8):2569-2576. (in Chinese with English abstract)
[4]   张山清,普宗朝,李景林.近50年新疆日照时数时空变化分析.地理学报,2013,68(11):1481-1492.
ZHANGS Q, PUZ C, LIJ L. The spatial-temporal variation of sunshine duration in Xinjiang during 1961—2010. Acta Geographica Sinica, 2013,68(11):1481-1492. (in Chinese with English abstract)
[5]   辛宏,张明军,李瑞雪,等.1961—2003年兰州市日照时数的变化特征.干旱区资源与环境,2010,24(10):82-86.
XINH, ZHANGM J, LIR X, et al. Chang of sunshine duration in Lanzhou from 1961 to 2003. Journal of Arid Land Resources and Environment, 2010,24(10):82-86. (in Chinese with English abstract)
[6]   刘艳艳,张勃,张耀宗,等.1960年至2005年河西干旱区的日照时数变化时空特征分析:以黑河中上游地区为例.资源科学,2009,31(9):1581-1586.
LIUY Y, ZHANGB, ZHANGY Z, et al. Analysis of temporal and spatial characteristics of sunshine duration change in Hexi arid region. Resources Science, 2009,31(9):1581-1586. (in Chinese with English abstract)
[7]   王钊,彭艳,白爱娟,等.近60年西安日照时数变化特征及其影响因子分析.高原气象,2012,31(1):185-192.
WANGZ, PENGY, BAIA J, et al. Analysis on variation of sunshine duration in Xi’an in recent 60 years and its influencing factor. Plateau Meteorology, 2012,31(1):185-192. (in Chinese with English abstract)
[8]   毛飞,卢志光,郑凌云,等.近40年那曲地区日照时数和风速变化特征.气象,2006,32(9):77-83.
MAOF, LUZ G, ZHENGL Y, et al. Variation characteristics of sunshine duration and wind velocity in Naqu, Xizang for recent 40 years. Meteorological Monthly, 2006,32(9):77-83. (in Chinese with English abstract)
[9]   何彬方,冯妍,荀尚培,等.安徽省50年日照时数的变化特征及影响因素.自然资源学报,2009,24(7):1275-1285.
HEB F, FENGY, XUNS P, et al. Climatic change of sunshine duration and its influencing factors over Anhui Province during the last 50 years. Journal of Natural Resources, 2009,24(7):1275-1285. (in Chinese with English abstract)
[10]   沈瑱,曾燕,肖卉.江苏省日照时数的气候特征分析.气象科学,2007,27(4):425-429.
SHENZ, ZENGY, XIAOH. Changes of sunshine hours in the recent 40 years over Jiangsu Province. Scientia Meteorologica Sinica, 2007,27(4):425-429. (in Chinese with English abstract)
[11]   张立波,肖薇.1961—2010年新疆日照时数的时空变化特征及其影响因素.中国农业气象,2013,34(2):130-137.
ZHANGL B, XIAOW. Temporal and spatial variation of sunshine duration and its influence in Xinjiang from 1961 to 2010. Chinese Journal of Agrometeorology, 2013,34(2):130-137. (in Chinese with English abstract)
[12]   陈志军,查书平,高阳华,等.重庆市日照时间变化规律和特征分析.南通大学学报(自然科学版),2008,7(2):55-59.
CHENZ J, CHA S P, GAOY H, et al. Characters and rules of the variation of sunlight radiation duration in Chongqing. Journal of Nantong University (Natural Science Edition), 2008,7(2):55-59. (in Chinese with English abstract)
[13]   陈少勇,张康林,邢晓宾,等.中国西北地区近47 a日照时数的气候变化特征.自然资源学报,2010,25(7):1142-1152.
CHENS Y, ZHANGK L, XINGX B, et al. Climatic change of sunshine duration in Northwest China during the last 47 years. Journal of Natural Resources, 2010,25(7):1142-1152. (in Chinese with English abstract)
[14]   杜军,边多,胡军,等.西藏近35年日照时数的变化特征及其影响因素.地理学报,2007,62(5):492-500.
DUJ, BIAND, HUJ, et al. Climatic change of sunshine duration and tis influencing factors over Tibet during the last 35 years. Acta Geographica Sinica, 2007,62(5):492-500. (in Chinese with English abstract)
[15]   邢程,白雪梅.西藏地区日照气候变化特征.成都信息工程大学学报,2017,32(5):554-558.
XINGC, BAIX M. The climate changes of sunshine duration over Tibet. Journal of Chengdu University of Information Technology, 2017,32(5):554-558. (in Chinese with English abstract)
[16]   杨春艳,沈渭寿,林乃峰.西藏高原近50年气温和降水时空变化特征研究.干旱区资源与环境,2013,37(2):167-172.
YANGC Y, SHENW S, LINN F. Temp-spatial changes of temperature and precipitation over Tibet Plateau during the last 50 years. Journal of Arid Land Resources and Environment, 2013,37(2):167-172. (in Chinese with English abstract)
[17]   刘瑞兵.GIS和Surfer软件在城市大气污染空间分析中的应用:以沂南县城区SO2为例.山东,青岛:青岛大学,2007.
LIUR B. Application of GIS and Surfer in spatial analysis of air contamination in Yinan. Qingdao, Shandong: Qingdao University, 2007. (in Chinese with English abstract)
[18]   李述训,吴通华.青藏高原地气温度之间的关系.冰川冻土,2005,27(5):627-632.
LIS X, WUT H. The relationship between air temperature and ground temperature in the Tibetan Plateau. Journal of Glaciology and Geocryology, 2005,27(5):627-632. (in Chinese with English abstract)
[19]   汤国安,杨昕.ArcGIS地理信息系统空间分析实验教程.北京:科学出版社,2006:189-292.
TANGG A, YANGX. Experiment Course of ArcGIS Geographical Information System Spatial Analysis. Beijing: Science Press, 2006:189-292. (in Chinese)
[20]   魏凤英.现代气候统计诊断与预测技术.北京:气象出版社,2007:36-38.
WEIF Y. Modern Climate Statistics Diagnose and Predict Technique. Beijing: China Meteorological Press, 2007:36-38. (in Chinese)
[21]   李新,程国栋,卢玲.空间内插方法比较.地球科学进展,2000,15(3):260-265.
LIX, CHENGG D, LUL. Comparison of spatial interpolation methods. Advance in Earth Sciences, 2000,15(3):260-265. (in Chinese with English abstract)
[22]   叶柏生,杨大庆,丁永建,等.中国降水观测误差分析及其修正.地理学报,2007,62(1):3-13.
YEB S, YANGD Q, DINGY J, et al. A bias-corrected precipitation climatology for China. Acta Geographica Sinica, 2007,62(1):3-13. (in Chinese with English abstract)
[23]   曹雯,许莹,段春锋.安徽省太阳总辐射参数化模型的适用性研究.中国农学通报,2014,30(26):207-212.
CAOW, XUY, DUANC F. Research on applicability of solar radiation parametric model in Anhui Province. Chinese Agricultural Science Bulletin, 2014,30(26):207-212. (in Chinese with English abstract)
[24]   贾建英,郭建平.东北地区近46年气候变化特征分析.干旱区资源与环境,2011,25(10):109-115.
JIAJ Y, GUOJ P. Characteristics of climate change in northeast China for last 46 years. Journal of Arid Land Resources and Environment, 2011,25(10):109-115. (in Chinese with English abstract)
[25]   郭军,任国玉.天津地区近40年日照时数变化特征及其影响因素.气象科技,2006,34(4):415-420.
GUOJ, RENG Y. Variation characteristics of sunshine duration in Tianjin in recent 40 years and influential factors. Meteorological Science and Technology, 2006,34(4):415-420. (in Chinese with English abstract)
[1] XIANG Jie, WANG Fuqiang, GUO Baoguang, WANG Qinggang, YU Chengqun, SHEN Zhenxi, SHAO Xiaoming. Effects of mixtures and intercropping of common vetch and oat in valley area of Tibet on the yield and quality[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(5): 555-564.
[2] YUE Haimei, ZHUANG Hua, PAN Zhaohui, GONG Wenfeng. Diversity and phylogenetic analysis of Chaetomium fungus from southeastern Tibet[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(4): 431-440.
[3] Zhu Bo, Zeng Jianbin, Wu Dezhi, Cai Shengguan, Yang Li’na, Zhang Guoping*. Identification and physiological characterization of low potassium tolerant germplasm in Tibetan Plateau annual wild barley[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(2): 165-174.