Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2019, Vol. 45 Issue (1): 102-108    DOI: 10.3785/j.issn.1008-9209.2017.12.151
Resource utilization & environmental protection     
Effects of different temperatures on photosynthesis and rooting of Cupressus gigantea seedlings
Fumei XIN1(),Yuting WANG2,Shengmao LI1, Danzengluobu2, Pubuciren2()
1. College of Resources and Environment, Tibet Agriculture and Animal Husbandry University, Linzhi 860000, Xizang, China
2. Forest Science Research Institute of Tibet Municipality, Lhasa 850000, China
Download: HTML   HTML (   PDF(867KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The Cupressus gigantea seedlings were cultivated under different temperatures (7.5, 12.5, 17.5, 22.5, 27.5 ℃) through artificial weather boxes, and the effects of different temperatures on growth, development and photosynthesis of seedlings were investigated. The results showed that: 1) Different temperatures significantly affected the growth of C. gigantea seedlings. The seedling height, aboveground dry mass, underground dry mass, new root dry mass and new root number reached the maximum at the temperature of 17.5 ℃, followed at 12.5 and 22.5 ℃, and they were poor at 27.5 and 7.5 ℃ (P<0.05). 2) The photosynthesis of the C. gigantea seedlings was different under the different temperatures. The net photosynthetic rate, stomatal conductance and transpiration rate reached the maximum, and the intercellular CO2 concentration was the smallest at 17.5 ℃, but on the contrary at 7.5 ℃. 3) The biomass of the new root was the highest at 17.5 ℃ (P<0.05), which was significantly higher than the other temperatures. While, the new root biomass was very small at 7.5 ℃, only accounted for about 1/5 of biomass at 17.5 ℃. The new root length, surface area and volume were relatively large at 17.5 and 22.5 ℃ compared with the other temperatures. The new root specific length was larger at 7.5 and 27.5 ℃ than at 12.5, 17.5 and 22.5 ℃, and the difference between the three temperatures was not significant. The above results show that the growth, development and photosynthesis of C. gigantea are different under the different temperatures, and the relative suitable growth temperature is 17.5 ℃, while the relative high temperature and relative low temperature are not conducive to its photosynthesis and the growth of new rooting.



Key wordsCupressus gigantea      different temperatures      photosynthesis      new roots     
Received: 15 December 2017      Published: 28 March 2019
CLC:  S 723.9  
Corresponding Authors: Pubuciren     E-mail: xzxinfumei@163.com;1412294990@qq.com
Cite this article:

Fumei XIN,Yuting WANG,Shengmao LI, Danzengluobu, Pubuciren. Effects of different temperatures on photosynthesis and rooting of Cupressus gigantea seedlings. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(1): 102-108.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2017.12.151     OR     http://www.zjujournals.com/agr/Y2019/V45/I1/102


不同温度对巨柏幼苗光合及生根的影响

通过人工气候箱控制不同温度(7.5、12.5、17.5、22.5、27.5 ℃)条件,研究巨柏幼苗在各设定温度下的生长发育及光合作用变化,以期为巨柏优质壮苗培育奠定基础。结果表明:1)不同温度显著影响巨柏幼苗的生长。在17.5 ℃时幼苗株高、地上干物质量、地下干物质量、新生根干物质量及新生根数均达到最大值,在12.5和22.5 ℃时幼苗的各项生长指标较17.5 ℃时略有降低。而在27.5和7.5 ℃时巨柏幼苗生长欠佳,各指标显著低于在其他温度条件下。2)巨柏幼苗光合作用在不同温度下存在差异。在17.5 ℃时净光合速率、气孔导度及蒸腾速率均达到最大,胞间CO2浓度最小,在7.5 ℃时巨柏幼苗的净光合速率、气孔导度及蒸腾速率最小,胞间CO2浓度最大。3)巨柏幼苗新生根在17.5 ℃时生物量最大(P<0.05),在7.5 ℃时最少,仅约为17.5 ℃时的1/5。在17.5和22.5 ℃时新生根长度、表面积及体积较大,而在27.5、12.5和7.5 ℃时表现欠佳;新生根比根长在7.5 ℃和27.5 ℃时均较大,而在12.5、17.5、22.5 ℃时较小,且三者之间差异不显著。以上结果表明,在不同温度下巨柏幼苗生长发育和光合作用表现不同,17.5 ℃是其较为适宜的生长温度,而相对高温和低温均不利于其进行光合作用及新生根的生长。


关键词: 巨柏,  不同温度,  光合作用,  新生根 

温度

Temperature/℃

高度

Height/cm

地径

Ground

diameter/mm

干物质量 Dry mass/g

地上

Overground

地下

Underground

新生根

New root

新生根数

Number of new roots

7.516.76±0.41c1.96±0.17b0.45±0.07c0.09±0.01c0.01±0.00d4.0±0.8c
12.521.10±0.37a2.42±0.14a0.81±0.10a0.15±0.02a0.06±0.00c8.5±1.2b
17.522.08±0.33a2.25±0.18a0.82±0.07a0.17±0.03a0.11±0.02a11.6±0..9a
22.521.92±0.52a2.30±0.09a0.80±0.09a0.16±0.01a0.09±0.01b8.7±1.1b
27.518.74±0.23b2.18±0.12a0.65±0.11b0.11±0.01b0.08±0.00b9.1±0.9b
Table 1 Growth differences of C. gigantea seedlings under different temperatures
Fig. 1 Net photosynthetic rate (A), stomatal conductance (B), intercellular CO2 concentration (C) and transpiration rate (D) of C. gigantea seedlings under different temperatures
Fig. 2 Changes of new root biomass of C. gigantea seedlings under different temperatures
Fig. 3 Changes of new root length of C. gigantea seedlings under different temperatures
Fig. 4 Changes of new root surface area of C. gigantea seedlings under different temperatures
Fig. 5 Changes of new root volume of C. gigantea seedlings under different temperatures
Fig. 6 Changes of new root specific length of C. gigantea seedlings under different temperatures
[1]   郑伟.植物幼苗生长对策研究.长春:东北师范大学,2011.
ZHENGW. The study on plant seedling growth strategy. Changchun: Northeast Normal University, 2011. (in Chinese with English abstract)
[2]   SAGER F, KUBIEND S. The temperature response of C3 and C4 photosynthesis. Plant Cell and Environment, 2007,30(9):1086-1106.
[3]   HANLEYM E. Seedling herbivory and the influence of plant species richness in seedling neighborhoods. Plant Ecology, 2004,170(1):35-41.
[4]   吴征镒.西藏植物志:第1卷.北京:科学出版社,1983:386.
WUZ Y. Flora in Tibet (Vol. 1). Beijing: Science Press, 1983:386. (in Chinese)
[5]   王景升,郑维列,潘刚.巨柏种子活力与濒危的关系.林业科学,2005,41(4):37-41.
WANGJ S, ZHENGW L, PANG. Relation between being endangered and seed vigor about Cupressus gigantea in Tibet. Scientia Silvae Sinicae, 2005,41(4):37-41. (in Chinese with English abstract)
[6]   汪松,解炎.中国物种红色名录.北京:高等教育出版社,2004:305.
WANGS, XIEY. China Species Red List. Beijing: Higher Education Press, 2004:305. (in Chinese)
[7]   郑维列,薛会英,罗大庆,等.巨柏种群的生态地理分布与群落学特征.林业科学,2007,43(12):8-15.
ZHENGW L, XUEH Y, LUOD Q, et al. Eco-geographic distribution and coenology characteristics of Cupressus gigantea. Scientia Silvae Sinicae, 2007,43(12):8-15. (in Chinese with English abstract)
[8]   杨宁.西藏林芝巨柏群落现状与保护.中南林业调查规划,2015,34(2):52-54.
YANGN. Current status and protection of Cupressus gigantea Cheng et L. K. Fu communities in Nyingchi of Tibet. Central South Forest Inventory and Planning, 2015,34(2):52-54. (in Chinese with English abstract)
[9]   兰小中,廖志华,王景升.西藏高原濒危植物西藏巨柏光合作用日进程.生态学报,2005,25(12):3172-3175.
LANX Z, LIAOZ H, WANGJ S. The diurnal course of photosynthesis of the endangered species Tibetan Cupressus gigantea in Tibet Plateau. Acta Ecologica Sinica, 2005,25(12):3172-3175. (in Chinese with English abstract)
[10]   边喜丽,杨小林,马和平,等.藏东南巨柏根系结构特征分析.西部林业科学,2017,46(4):107-112.
BIANX L, YANGX L, MA H P, et al. Root structure and specific characteristics of Cupressus gigantea in Southeast Tibet. Journal of West China Forestry Science, 2017,46(4):107-112. (in Chinese with English abstract)
[11]   尹金迁,赵垦田,邹林红.基质和温度对巨柏移植苗根系生长发育的影响.西部林业科学,2017,46(5):87-92.
YINJ Q, ZHAOK T, ZOUL H. Impact of different substrates and temperatures on the growth and development of Cupressus gigantea transplant seedling roots. Journal of West China Forestry Science, 2017,46(5):87-92. (in Chinese with English abstract)
[12]   罗桑卓玛,辛福梅,杨小林,等.干旱胁迫对香柏幼苗生长和生理指标的影响.西北农林科技大学学报(自然科学版),2014,43(5):51-57,70.
LUOSANGZUOMA, XINF M, YANGX L, et al. Effect of drought stress on growth and physiological indicators of seedlings of Sabina pingii var. wilsonii seedlings. Journal of Northwest Agriculture and Forestry University (Natural Science Edition), 2014,43(5):51-57,70. (in Chinese with English abstract)
[13]   辛福梅,刘济铭,杨小林,等.色季拉山急尖长苞冷杉叶片及细根性状随海拔的变异特征.生态学报,2017,37(8):2719-2728.
XINF M, LIUJ M, YANGX L, et al. Variation in leaf and fine root traits with altitude in Abies georgei var. smithii in Mt. Shergyla. Acta Ecologica Sinica, 2017,37(8):2719-2728. (in Chinese with English abstract)
[14]   平晓燕,周广胜,孙敬松.植物光合产物分配及其影响因子研究进展.植物生态学报,2010,34(1):100-111.
PINGX Y, ZHOUG S, SUNJ S. Advances in the study of photosynthate allocation and its controls. Chinese Journal of Plant Ecology, 2010,34(1):100-111. (in Chinese with English abstract)
[15]   刘贤赵,宿庆,李嘉竹,等.控温条件下C3、C4草本植物碳同位素组成对温度的响应.生态学报,2015,35(10):3278-3287.
LIUX Z, SUQ, LIJ Z, et al. Responses of carbon isotopic composition of C3 and C4 herbaceous plants to temperature under controlled temperature conditions. Acta Ecologica Sinica, 2015,35(10):3278-3287. (in Chinese with English abstract)
[16]   景立权,赖上坤,王云霞,等.大气CO2浓度和温度互作对水稻生长发育的影响.生态学报,2016,36(14):4254-4265.
JINGL Q, LAIS K, WANGY X, et al. Combined effect of increasing atmospheric CO2 concentration and temperature on growth and development of rice: a research review. Acta Ecologica Sinica, 2016,36(14):4254-4265. (in Chinese with English abstract)
[17]   ANDREWSM, RAVENJ A, SPRENTJ I. Environmental effects on dry matter partitioning between shoot and root of crop plants: relations with growth and shoot protein concentration. Annals of Applied Biology, 2001,138(1):57-68.
[18]   XUD Q. Progress in photosynthesis research: from molecular mechanisms to green revolution. Acta Phytophysiologica Sinica, 2001,27(2):97-108.
[19]   姜籽竹,朱恒光,张倩,等.低温胁迫下植物光合作用的研究进展.作物杂志,2015(3):23-28.
JIANGZ Z, ZHUH G, ZHANGQ, et al. Progress of influence of low temperature on plant photosynthesis. Crops, 2015(3):23-28. (in Chinese with English abstract)
[20]   HOGLINDM, HANSLINH M, MORTENSENL M. Photosynthesis of Lolium perenne L. at low temperatures under low irradiances. Environmental and Experimental Botany, 2011,70(2/3):297-304.
[21]   LUG H, WUY F, BAIW B, et al. Influence of high temperature stress on net photosynthesis, dry matter partitioning and rice grain yield at flowering and grain filling stages. Journal of Integrative Agriculture, 2013,12(4):603-609.
[22]   ALLENL H, VU J C V. Carbon dioxide and high temperature effects on growth of young orange trees in a humid, subtropical environment. Agricultural and Forest Meteorology, 2009,149(5):820-830.
[23]   许辰森,熊德成,邓飞,等.杉木幼苗和伴生植物细根对土壤增温的生理生态响应.生态学报,2017,37(4):1232-1243.
XUC S, XIONGD C, DENGF, et al. The ecophysiological responses of fine-roots of Chinese fir (Cunninghamia lanceolata) seedlings and the associated plants to soil warming. Acta Ecologica Sinica, 2017,37(4):1232-1243. (in Chinese with English abstract)
[24]   LIM. Impact factors on fine roots seasonal dynamics in Fraxinus mandshurica plantation. Scientia Silvae Sinicae, 2006,42(9):7-12.
[1] WANG Yihang, ZHAO Luyao, WANG Guoming, ZHU Aiyi. Physiological responses in Neolitsea sericea seedlings to drought stress[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(5): 543-551.
[2] XIN Fumei, JIA Liming, YANG Xiaolin, ZANG Jiancheng. Effects of drought stress on characteristics of water consumption and photosynthesis of the main shrub species in Lhasa semi-arid valley[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(5): 617-.
[3] . Plasticity responses of two sympodial bamboo species to nitrogen levels[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(5): 608-613.
[4] ZHANG Kai‐ming,LI Yong‐hua,KONG De‐zheng,HE Song‐lin. Photo‐physiological mechanisms of tolerant difference to high temperature between two varieties of Celosia cristata[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2011, 37(5): 501-508.