Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2019, Vol. 45 Issue (1): 39-46    DOI: 10.3785/j.issn.1008-9209.2017.10.092
Plant protection     
Overexpression of Ace-AMP1 in Pichia pastoris on enhancing the inhibition of blue mold on pears
Ming LIN1(),Luhua JIANG2,Ting YU1,2()
1. College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
2. Chun’an County Agricultural Technology Extension Center, Hangzhou 311700, China
Download: HTML   HTML (   PDF(3074KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Conventional methods of Ace-AMP1 antimicrobial peptide extraction from onion seeds are usually difficult, costly with a low extraction rate. To solve these problems, the original gene of antimicrobial peptide Ace-AMP1 was optimized according to the preference of Pichia pastoris and ligated into pPICZα A vector, which was designated as pPICZα A/Ace-AMP1. The recombinant vector was then transformed P. pastoris through electroporation. The results of real-time quantitative polymerase chain reaction (RT-qPCR) and Western-blotting confirmed that the Ace-AMP1 was successfully overexpressed in GS115, and the antibacterial peptide could be stably expressed in yeast cell. The protein expression level showed a significant increase in the supernatant after the induction, reached the maximum concentration (109 μg/mL) at 84 h, while the control group still remained a low level. The biocontrol experiment indicated that the recombinant strain GS115/Ace-AMP1 could highly control the blue mold compared with the controls, which was 34% of disease incidence lower than the sterile distilled water treatment. The same trend was observed in the lesion diameter, which dropped by 65% with the GS115/Ace-AMP1 treatment compared with the control. Therefore, the GS115/Ace-AMP1 can be as an Ace-AMP1 peptide manufacturer, as well as a biocontrol agent.



Key wordsAce-AMP1 antimicrobial peptide      Pichia pastoris      Penicillium expansum      postharvest biocontrol     
Received: 09 October 2017      Published: 28 March 2019
CLC:  Q 812  
  S 476  
Corresponding Authors: Ting YU     E-mail: 21513030@zju.edu.cn;yuting@zju.edu.cn
Cite this article:

Ming LIN,Luhua JIANG,Ting YU. Overexpression of Ace-AMP1 in Pichia pastoris on enhancing the inhibition of blue mold on pears. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(1): 39-46.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2017.10.092     OR     http://www.zjujournals.com/agr/Y2019/V45/I1/39


Ace-AMP1过表达毕赤酵母工程菌株的构建及其对梨青霉病的抑制作用

为解决从洋葱种子中直接提取Ace-AMP1抗菌肽难度大、成本高、提取率低的问题,本研究根据毕赤酵母密码子的偏好性,优化合成了洋葱种子的Ace-AMP1抗菌肽基因,将其连接到表达载体pPICZα A中,并电转化毕赤酵母GS115感受态细胞进行表达。实时荧光定量聚合酶链式反应(real-time quantitative polymerase chain reaction, RT-qPCR)及蛋白质印迹法(Western-blotting)结果证实,Ace-AMP1过表达GS115构建成功,抗菌肽能在酵母体内稳定表达。对蛋白质表达水平的检测结果表明,GS115/Ace-AMP1经诱导后上清液中蛋白质质量浓度显著增加,并于84 h达到最大值(109 μg/mL),而对照组则一直处于较低水平。对梨果实青霉病的抑制效果实验表明:GS115/Ace-AMP1能显著抑制扩展青霉(Penicillium expansum)在梨果实上的侵染;与对照组相比,青霉病发病率下降34%,平均病斑直径减小65%。本研究为Ace-AMP1抗菌肽的大规模生产及其抑制果实采后病害的开发利用奠定了基础。


关键词: Ace-AMP1抗菌肽,  毕赤酵母,  青霉病,  采后生物防治 
Fig. 1 Identification result of pPICZα A/Ace-AMP1 recom-binant plasmid by PCR
Fig. 2 Identification result of GS115/Ace-AMP1 recom-binant strain by PCR
Fig. 3 Protein content of GS115/Ace-AMP1 recombinant strain
Fig. 4 Relative expression amount of Ace-AMP1 for the recombinant strain GS115/Ace-AMP1
Fig. 5 Identification result of GS115/Ace-AMP1 recombinant strain by Western-blotting
Fig. 6 Control efficiency of recombinant strain GS115/Ace-AMP1 on Penicillium expansum in pear fruit
[1]   SHARMAR R, SINGHD, SINGHR. Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: a review. Biological Control, 2009,50(3):205- 221.
[2]   SáNCHEZC V, SERRANOC, CONCEI??O OLIVEIRAM, et al. Differential susceptibility of Morettini pears to blue mold caused by Penicillium expansum. Emirates Journal of Food and Agriculture, 2016,28(6):374-380.
[3]   ZENGL Z, YUC, FUD A, et al. Improvement in the effectiveness of Cryptococcus laurentii to control postharvest blue mold of pear by its culture in beta-glucan amended nutrient broth. Postharvest Biology and Technology, 2015,104:26-32.
[4]   RENX Y, KONGQ J, WANGH L, et al. Biocontrol of fungal decay of citrus fruit by Pichia pastoris recombinant strains expressing cecropin A. Food Chemistry, 2012,131(3):796-801.
[5]   BANANIH, SPADAROD, ZHANGD P, et al. Postharvest application of a novel chitinase cloned from Metschnikowia fructicola and overexpressed in Pichia pastoris to control brown rot of peaches. International Journal of Food Microbiology, 2015,199:54-61.
[6]   NUNESC A. Biological control of postharvest diseases of fruit. European Journal of Plant Pathology, 2012,133(1):181-196.
[7]   SUNDHI, MELINP. Safety and regulation of yeasts used for biocontrol or biopreservation in the food or feed chain. Antonie Van Leeuwenhoek, 2011,99(1):113-119.
[8]   BALLETN, SOUCHEJ L, VANDEKERCKOVEP. Efficacy of Candida oleophila, strain O, in preventing postharvest diseases of fruits. Acta Horticulturae, 2016,1144:105-112.
[9]   LEGLERS E, PINTYEA, CAFFIT, et al. Sporulation rate in culture and mycoparasitic activity, but not mycohost specificity, are the key factors for selecting Ampelomyces strains for biocontrol of grapevine powdery mildew (Erysiphe necator). European Journal of Plant Pathology, 2016,144(4):723-736.
[10]   HUH, YANF J, WILSONC, et al. The ability of a cold-adapted Rhodotorula mucilaginosa strain from Tibet to control blue mold in pear fruit. Antonie Van Leeuwenhoek, 2015,108(6):1391-1404.
[11]   QINX J, XIAOH M, XUEC H, et al. Biocontrol of gray mold in grapes with the yeast Hanseniaspora uvarum alone and in combination with salicylic acid or sodium bicarbonate. Postharvest Biology and Technology, 2015,100:160-167.
[12]   LIUJ, WISNIEWSKIM, ARTLIPT, et al. The potential role of PR-8 gene of apple fruit in the mode of action of the yeast antagonist, Candida oleophila, in postharvest biocontrol of Botrytis cinerea. Postharvest Biology and Technology, 2013,85:203-209.
[13]   BANANIH, SPADAROD, ZHANGD P, et al. Biocontrol activity of an alkaline serine protease from Aureobasidium pullulans expressed in Pichia pastoris against four postharvest pathogens on apple. International Journal of Food Microbiology, 2014,182/183:1-8.
[14]   KUDDUSM R, RUMIF, TSUTSUMIM, et al. Expression, purification and characterization of the recombinant cysteine-rich antimicrobial peptide snakin-1 in Pichia pastoris. Protein Expression and Purification, 2016,122:15-22.
[15]   MENSAB, KIM Y H, CHOIS, et al. Antibacterial mechanism of action of arylamide foldamers. Antimicrobial Agents and Chemotherapy, 2011,55(11):5043-5053.
[16]   ZHANGJ, WUX, ZHANGS Q. Antifungal mechanism of antibacterial peptide, ABP-CM4, from Bombyx mori against Aspergillus niger. Biotechnology Letters, 2008,30(12):2157-2163.
[17]   ZHANGB, WANGJ N, NINGS Q, et al. Peptides derived from tryptic hydrolysate of Bacillus subtilis culture suppress fungal spoilage of table grapes. Food Chemistry, 2018,239:520-528.
[18]   LIUZ Y, ZENGM Y, DONGS Y, et al. Effect of an antifungal peptide from oyster enzymatic hydrolysates for control of gray mold (Botrytis cinerea) on harvested strawberries. Postharvest Biology and Technology, 2007,46(1):95-98.
[19]   CAMMUEB P, THEVISSENK, HENDRIKSM, et al. A potent antimicrobial protein from onion seeds showing sequence homology to plant lipid transfer proteins. Plant Physiology, 1995,109(2):445-455.
[20]   TASSINS, BROEKAERTW F, MARIOND, et al. Solution structure of Ace-AMP1, a potent antimicrobial protein extracted from onion seeds. Structural analogies with plant nonspecific lipid transfer proteins. Biochemistry, 1998,37(11):3623-3637.
[21]   YUS M, LEE Y H. Genes involved in nutrient competition by Pseudomonas putida JBC17 to suppress green mold in postharvest satsuma mandarin. Journal of Basic Microbiology, 2015,55(7):898-906.
[22]   LUL F, YEC Z, GUOS H, et al. Preharvest application of antagonistic yeast Rhodosporidium paludigenum induced resistance against postharvest diseases in mandarin orange. Biological Control, 2013,67(2):130-136.
[23]   任雪艳.重组酵母GS115/PSD、GS115/CEC的构建及其对水果采后病害抑制效果的研究.杭州:浙江大学,2012.
RENX Y. Construction of recombinant yeast GS115/PSD, GS115/CEC and study on their inhibition effect on fruit postharvest decay. Hangzhou: Zhejiang University, 2012. (in Chinese with English abstract)
[24]   SHAYKHIEVR, BEISSWENGERC, KANDLERK, et al. Human endogenous antibiotic LL-37 stimulates airway epithelial cell proliferation and wound closure. American Journal of Physiology: Lung Cellular and Molecular Physiology, 2005,289(5):L842-L848.
[25]   FERREIRAM A, LUNDB M. The effect of nisin on Listeria monocytogenes in culture medium and long-life cottage cheese. Letters in Applied Microbiology, 1996,22(6):433-438.
[26]   任雪艳,郑晓冬.表达豌豆防御素基因的重组酵母对采后柑橘酸腐病的生物防治.中国食品学报,2011,11(6):102-107.
RENX Y, ZHENGX D. Biological control of postharvest citrus sour rot by Pichia pastoris recombinant strains expressing pea defensin gene. Journal of Chinese Institute of Food Science and Technology, 2011,11(6):102-107. (in Chinese with English abstract)
[27]   李冠楠,夏雪娟,隆耀航,等.抗菌肽的研究进展及其应用.动物营养学报,2014,26(1):17-25.
LIG N, XIAX J, LONGY H, et al. Research progresses and applications of antimicrobial peptides. Chinese Journal of Animal Nutrition, 2014,26(1):17-25. (in Chinese with English abstract)
[1] Zhang Jianhui, Wang Shoufeng*. Expression of Astragalus membranaceus  phenylalanine ammonia-lyase gene in Pichia pastoris[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(1): 1-8.