Please wait a minute...
浙江大学学报(农业与生命科学版)  2019, Vol. 45 Issue (6): 647-656    DOI: 10.3785/j.issn.1008-9209.2018.12.051
作物栽培与生理     
Heat tolerance evaluation of transgenic cotton germplasms with insect resistance and herbicide tolerance
Elmon CHINDUDZI(),苏帮荣,郭伊,钟镇涛,Jane MAKONI,祝水金,陈进红()
浙江大学农业与生物技术学院,杭州 310058
College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
Elmon CHINDUDZI(),Bangrong SU,Yi GUO,Zhentao ZHONG,Jane MAKONI,Shuijin ZHU,Jinhong CHEN()
 全文: PDF(632 KB)   HTML
摘要:

在前期利用田间植株进行膜热稳定性、花粉生活力和叶绿素稳定性等耐热评价筛选基础上,选择HNZ 1063、HNZ 1068、HNZ 1073、HNZ 1081、HNZ 1088和HNZ 1091等6个转基因抗虫、耐除草剂棉花种质和常规栽培种中棉所49(ZMS 49),通过室内培养对4周苗龄的幼苗在42 ℃(光照)/24 ℃(黑暗)条件下处理1周,测定其光合速率、叶绿素含量、抗氧化酶活性等指标,以进一步评价参试种质的耐热性。结果表明,HNZ 1091、HNZ 1068和ZMS 49种质较为耐热,而HNZ 1081和HNZ 1073种质耐热性较差。说明插入相同基因的不同的转基因株系的耐热反应存在差异。

关键词: 转基因抗虫耐除草剂棉花种质热胁迫光合速率叶绿素含量抗氧化酶活性    
Abstract:

Heat stress has increasingly become a global problem affecting agriculture including cotton production which is a critical fiber and oil crop. The purpose of this study was to evaluate six transgenic insect-resistant and herbicide-tolerant cotton germplasms (HNZ 1063, HNZ 1068, HNZ 1073, HNZ 1081, HNZ 1088 and HNZ 1091) and the conventional cultivar Zhongmiansuo 49 (ZMS 49) based on the evaluation and screening of membrane thermostability, pollen viability and chlorophyll stability of field plants as an initial study. A follow up study was conducted using four-week-old seedlings treated at 42 ℃ (light)/24 ℃ (dark) for one week to further evaluate heat tolerance by measuring and analyzing photosynthetic rate, chlorophyll content, antioxidant enzyme activity and growth parameters. The results showed that three germplasms, HNZ 1091, HNZ 1068 and ZMS 49, were more heat-tolerant, while two, HNZ 1081 and 1073, were less tolerant. It can thus be concluded that there are differences in heat tolerance among different transgenic lines inserting the same gene.

Key words: transgenic insect-resistant and herbicide-tolerant cotton germplasms    heat stress    photosynthetic rate    chlorophyll content    antioxidant enzyme activity
出版日期: 2020-01-20
CLC:  S 562  
基金资助: the National Key Research and Development Project(2018YFD0100401)
通讯作者: 陈进红     E-mail: elmonchindudzi@yahoo.com;jinhongchen@zju.edu.cn
作者简介: CHINDUDZI Elmon (https://orcid.org/0000-0003-0207-5025), E-mail: elmonchindudzi@yahoo.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Elmon CHINDUDZI
苏帮荣
郭伊
钟镇涛
Jane MAKONI
祝水金
陈进红

引用本文:

Elmon CHINDUDZI,苏帮荣,郭伊,钟镇涛,Jane MAKONI,祝水金,陈进红. Heat tolerance evaluation of transgenic cotton germplasms with insect resistance and herbicide tolerance[J]. 浙江大学学报(农业与生命科学版), 2019, 45(6): 647-656.

Elmon CHINDUDZI,Bangrong SU,Yi GUO,Zhentao ZHONG,Jane MAKONI,Shuijin ZHU,Jinhong CHEN. . Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(6): 647-656.

链接本文:

http://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2018.12.051        http://www.zjujournals.com/agr/CN/Y2019/V45/I6/647

Genotype Membrane thermostability Pollen viability Chlorophyll stability index
Significance <0.001 0.003 <0.001
ZMS 49 27.42±1.75b 63.06±3.01a 88.09±2.71ab
HNZ 1063 24.77±1.52b 60.58±3.75ab 76.44±6.22bc
HNZ 1068 40.85±4.91a 66.01±2.57a 93.27±2.83a
HNZ 1073 27.76±1.05b 55.80±6.94b 72.02±6.57cd
HNZ 1081 22.66±1.94b 55.63±3.19b 56.54±9.05e
HNZ 1088 26.06±4.57b 61.83±1.27ab 55.22±9.42e
HNZ 1091 39.09±2.66a 64.70±1.92a 62.06±4.06de
Table 1   Heat tolerance selection tests performed at the flowering stage (%)
Fig. 1  Photosynthetic parameters in seven cotton genotypes after exposure to heat stress for one week relative to the control Error bars represent the standard deviation of the mean. Single asterisk (*) shows significant differences between the control and the treatment at the 0.05 probability level.
Fig. 2  Chlorophyll parameters in seven cotton genotypes after exposure to heat stress for one week relative to the control Error bars represent the standard deviation of the mean. Single asterisk (*) shows significant differences between the control and the treatment at the 0.05 probability level.
Fig. 3  Antioxidant and carotenoid parameters in seven cotton genotypes after exposure to heat stress for one week relative to the control Error bars represent the standard deviation of the mean. Single asterisk (*) shows significant differences between the control and the treatment at the 0.05 probability level.
Fig. 4  Growth parameters in seven cotton genotypes after exposure to heat stress for one week relative to the control Error bars represent the standard deviation of the mean. Single asterisk (*) shows significant differences between the control and the treatment at the 0.05 probability level.
1 SINGH R P , PRASAD P V V , SUNITA K , et al . Influence of high temperature and breeding for heat tolerance in cotton: a review. Advances in Agronomy, 2007,93(Suppl.):313-385.
2 BITA C E , GERATS T . Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Science, 2013(4):1-18.
3 LIPIEC J , DOUSSAN C , NOSALEWICZ A , et al . Effect of drought and heat stresses on plant growth and yield: a review. International Agrophysics, 2013,27(4):463-477.
4 KAUSHAL N , BHANDARI K , KADAMBOT H M S , et al . Food crops face rising temperatures: an overview of responses, adaptive mechanisms, and approaches to improve heat tolerance. Cogent Food & Agriculture, 2016,2(1):1-42.
5 MISRA O P , KALRA P . Effect of rising temperature due to ozone depletion on the dynamics of a prey-predator system:a mathematical model. Applications and Applied Mathematics, 2012,7(2):534-555.
6 OOSTERHUIS D M , SNIDER J L . High temperature stress on floral development and yield of cotton. Flowering and Fruiting, 2010,1991(Chpt 6):1-24.
7 SYED A Z , MEHMOOD A N , MUHAMMAD A W , et al . Temperature extremes in cotton production and mitigation strategies//Past, Present and Future Trends in Cotton Breeding. [S. l.: s. n.], 2018:65-91.
8 HARKESS A . Handling the heat-methylome variation underlying heat tolerance in cotton. The Plant Cell, 2018,30(9):1947-1948.
9 DABBERT T A , GORE M A . Challenges and perspectives on improving heat and drought stress resilience in cotton. Journal of Cotton Science, 2014,409(18):393-409.
10 MüLLER F , RIEU I . Acclimation to high temperature during pollen development. Plant Reproduction, 2016,29(1/2):107-118.
11 ZHANG J , SRIVASTAVA V , STEWART J M , et al . Heat-tolerance in cotton is correlated with induced overexpression of heat-shock factors, heat-shock proteins, and general stress response genes. Journal of Cotton Science, 2016,20:253-262.
12 LI W , CUI X F . A special issue on plant stress biology: from model species to crops. Molecular Plant, 2014,7(5):755-757.
13 WELLBURN A R . The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 1994,144(3):307-313.
14 HODGES D M , DELONG J M , FORNEY C F , et al . Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 1999,207(4):604-611.
15 BEAUCHAMP C , FRIDOVICH I . Reactions. [ S . l.: s. n.], 1971.
16 SHIVANNA K R , RANGASWAMY N S . Tests for pollen viability//Pollen Biology. Berlin: Springer, 1992:33-37.
17 WANG Q L , CHEN J H , HE N Y , et al . Metabolic reprogramming in chloroplasts under heat stress in plants. International Journal of Molecular Sciences, 2018,19(3):849.
18 PE?UELAS J , LLUSIà J . Linking photorespiration, monoterpenes and thermotolerance in Quercus . New Phy-tologist, 2002,155(2):227-237.
19 LAW R D, CRAFTS-BRANDNER S J . Inhibition and acclimation of photosynthesis to heat stress is closely correlated with activation of ribulose-1, 5-bisphosphate carboxylase/oxygenase. Plant Physiology, 1999,120(1):173-182.
20 BERRY J , BJORKMAN O . Photosynthetic response and adaptation to temperature in higher plants. Annual Review of Plant Physiology, 1980,31(1):491-543.
21 WITUSZY?SKA W , KARPI?SKI S . Programmed cell death as a response to high light, UV and drought stress in plants. Abiotic Stress: Plant Responses and Application in Agriculture . [ S . l.: s. n.], 2013:207-246.
22 GRILO E C , COSTA P N , GURGEL C S S , et al . Alpha-tocopherol and gamma-tocopherol concentration in vegetable oils. Food Science and Technology (Campinas), 2014,34(2):379-385.
23 SARANGA Y , JIANG C X , WRIGHT R J , et al . Genetic dissection of cotton physiological responses to arid conditions and their inter-relationships with productivity. Plant, Cell and Environment, 2004,155(2):227-237.
24 REYNOLDS M P , NAGARAJAN S , RAZZAQUE M A , et al . Using canopy temperature depression to select for yield potential of wheat in heat-stressed environments//Wheat Program Special Report No. 42. Mexico Distrito Federal: CIMMYT, 1997.
25 GüR A , DEMIREL U , OZDEN M , et al . Diurnal gradual heat stress affects antioxidant enzymes, proline accumu-lation and some physiological components in cotton (Gossypium hirsutum L.). African Journal of Biotechnology, 2010,9(7):1008-1015.
26 NISKANEN A M , K?RKK?INEN K , PASONEN H . Comparison of variation in adaptive traits between wild-type and transgenic silver birch (Betula pendula) in a field trial. Tree Genetics and Genomes, 2011,7(5):955-967.
27 LASERNA M P , MADDONNI G A , LóPEZ C G . Phenotypic variations between non-transgenic and transgenic maize hybrids. Field Crops Research, 2012,134:175-184.
[1] 王玉珍,马瑶,陈琦,马红燕,杨晶,刘宸,李峻志,马小魁. 单色光对桑黄生长及其抗氧化酶活性的影响[J]. 浙江大学学报(农业与生命科学版), 2019, 45(5): 542-549.
[2] 王舒甜,王金平,张金池,岳健敏. 油菜素内酯对盐胁迫下香樟幼苗叶片抗氧化酶活性的影响[J]. 浙江大学学报(农业与生命科学版), 2017, 43(4): 476-482.
[3] 张建新,方依秋,丁彦芬,方炎明. 蕨类植物的叶绿素、光合参数与耐荫性[J]. 浙江大学学报(农业与生命科学版), 2011, 37(4): 413-420.
[4] 张广富,赵铭钦,韩富根,吕中显,刘 乐,闫永胜. 烤烟净光合速率与生理生态因子的关系[J]. 浙江大学学报(农业与生命科学版), 2011, 37(2): 187-192.
[5] 吴根良, 孙瑶, 沈国正, 何勇, 朱祝军. 不同光照条件下大花蕙兰净光合速率和叶绿素荧光参数的日变化[J]. 浙江大学学报(农业与生命科学版), 2009, 35(6): 607-612.
[6] 姚建松, 杨海清, 何勇. 基于可见-近红外光谱技术的油菜叶片叶绿素含量无损检测研究[J]. 浙江大学学报(农业与生命科学版), 2009, 35(4): 433-438.
[7] 李鸿文 冯明光. 球孢白僵菌不同菌株分生孢子的耐热能力[J]. 浙江大学学报(农业与生命科学版), 2008, 34(2): 158-162.
[8] 沈波 庄杰云 樊叶杨 蒋靓 郑康乐 . 不同供水条件下水稻叶绿素含量的QTL分析 [J]. 浙江大学学报(农业与生命科学版), 2007, 33(4): 400-406.
[9] 张英鹏  林咸永  章永松  李刚  杨运娟. 不同氮素形态对菠菜生长及体内抗氧化酶活性的影响[J]. 浙江大学学报(农业与生命科学版), 2006, 32(2): 139-144.
[10] 张燕琴  李方  郭延平  陈昆松. 叶片叶绿素荧光参数用作采后切花菊衰老指标[J]. 浙江大学学报(农业与生命科学版), 2005, 31(6): 683-688.
[11] 付东亚  洪健  陈集双  蒋德安. 青菜和芥菜感染芜菁花叶病毒(TuMV)后的光合特性变化[J]. 浙江大学学报(农业与生命科学版), 2003, 29(6): 599-602.
[12] 李志刚  叶正钱  杨肖娥  V.V.Virmani . 不同养分管理对杂交稻生育后期功能[J]. 浙江大学学报(农业与生命科学版), 2003, 29(3): 265-270.
[13] 翁晓燕  蒋德安. 生态因子对水稻Rubisco和光合日变化的调节 [J]. 浙江大学学报(农业与生命科学版), 2002, 28(4): 387-391.
[14] 王秀珍  黄敬峰  李云梅  沈掌泉  王人潮. 高光谱数据与水稻农学参数之间的相关分析[J]. 浙江大学学报(农业与生命科学版), 2002, 28(3): 283-288.
[15] 李岩  潘海春  李德全. 抗旱性不同的玉米品种在土壤干旱及复水过程中的生理差异[J]. 浙江大学学报(农业与生命科学版), 2002, 28(3): 249-254.