Please wait a minute...
浙江大学学报(医学版)  2018, Vol. 47 Issue (1): 89-96    DOI: 10.3785/j.issn.1008-9292.2018.02.13
综述     
受体相互作用蛋白家族在炎症中的作用研究进展
丁京京(),卢韵碧*()
浙江大学医学院药理学系, 浙江 杭州 310058
Research progress on receptor interacting proteins in inflammation
DING Jingjing(),LU Yunbi*()
Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
 全文: PDF(1149 KB)   HTML( 23 )
摘要:

受体相互作用蛋白(RIP)家族是一组苏氨酸/丝氨酸蛋白激酶,具有相对保守的激酶结构域和不同的非激酶结构域,参与固有免疫应答、炎症等生理和病理过程。近年来研究表明,RIP家族通过参与坏死复合物的形成介导细胞坏死、触发炎症反应,其中RIP1和RIP3与细胞坏死的关系尤为密切。细胞坏死是一种精密调控的细胞死亡方式。通过TNF信号通路和Toll样受体信号通路传递的死亡信号可招募并磷酸化混合谱系激酶结构域蛋白,最终导致细胞崩解死亡,而细胞崩解后释放的胞内物质可触发炎症反应。本文着重阐述RIP家族介导细胞坏死和炎症发生所涉及的主要信号通路及分子机制,简述了RIP家族在相关炎症性疾病中的重要作用,并对RIP作为炎症性疾病治疗靶点的可能性进行了展望。

关键词: 蛋白激酶类转录因子信号传导Toll样受体炎症坏死细胞凋亡综述    
Abstract:

Receptor interacting proteins (RIPs) are a group of threonine/serine protein kinases, which have relatively conserved kinase domains and different non-kinase domains, and are involved in physiological and pathological processes including innate immune response and inflammation. In recent years, many studies have shown that RIPs mediate cell necroptosis and triggers inflammatory responses by participating in the formation of necrotic complexes, and RIP1 and RIP3 are particularly closely related to cell necrosis. Cell necroptosis is a well-regulated way of cell death. The death signal that transmit through the TNF signaling pathway and the Toll-like receptor signaling pathway can recruit and phosphorylate mixed lineage kinase domain-like protein (MLKL), and eventually leading to disintegration and death of cells, and the release of cells intercellular material after cell disintegration can trigger an inflammatory reaction. This review mainly focuses on the major signaling pathways and molecular mechanisms that are involved in the mediation of necrosis and inflammation by RIPs. It also highlights the importance of RIPs in the development of inflammatory diseases and their potentials as therapeutic targets for inflammatory diseases.

Key words: Protein kinases    Transcription factors    Signal transduction    Toll-like receptors    Inflammation    Necrosis    Apoptosis    Review
收稿日期: 2017-11-20 出版日期: 2018-06-12
CLC:  R392  
基金资助: 浙江省自然科学基金(LY16H010004);浙江省医药卫生科技计划(2017KY320)
通讯作者: 卢韵碧     E-mail: 21618573@zju.edu.cn;yunbi@zju.edu.cn
作者简介: 丁京京(1993-), 男, 硕士研究生, 主要从事药理学研究; E-mail:21618573@zju.edu.cn; https://orcid.org/0000-0002-2071-1374
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
丁京京
卢韵碧

引用本文:

丁京京,卢韵碧. 受体相互作用蛋白家族在炎症中的作用研究进展[J]. 浙江大学学报(医学版), 2018, 47(1): 89-96.

DING Jingjing,LU Yunbi. Research progress on receptor interacting proteins in inflammation. J Zhejiang Univ (Med Sci), 2018, 47(1): 89-96.

链接本文:

http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2018.02.13        http://www.zjujournals.com/med/CN/Y2018/V47/I1/89

图 1  受体相互作用蛋白家族结构示意图
图 2  TNF信号途径中受体相互作用蛋白的作用
图 3  Toll样受体信号途径中受体相互作用蛋白激酶的作用
1 OGAWA Y , CALHOUN W J . The role of leukotrienes in airway inflammation[J]. J Allergy Clin Immunol, 2006, 118 (4): 789- 798
doi: 10.1016/j.jaci.2006.08.009
2 LAMKANFI M , DIXIT V M . Manipulation of host cell death pathways during microbial infections[J]. Cell Host Microbe, 2010, 8 (1): 44- 54
doi: 10.1016/j.chom.2010.06.007
3 SONENSHINE D E , MACALUSO K R . Microbial invasion vs. tick immune regulation[J]. Front Cell Infect Microbiol, 2017, 7 390
doi: 10.3389/fcimb.2017.00390
4 NOGUSA S , SLIFKER M J , INGRAM J P et al. RIPK3 is largely dispensable for RIG-I-like receptor-and type Ⅰ interferon-driven transcriptional responses to influenza A virus in murine fibroblasts[J]. PLoS One, 2016, 11 (7): e0158774
doi: 10.1371/journal.pone.0158774
5 SALEH D , DEGTEREV A . Emerging roles for RIPK1 and RIPK3 in pathogen-induced cell death and host immunity[J]. Curr Top Microbiol Immunol, 2017, 403 37- 75
6 SILKE J , RICKARD J A , GERLIC M . The diverse role of RIP kinases in necroptosis and inflammation[J]. Nat Immunol, 2015, 16 689- 697
doi: 10.1038/ni.3206
7 PEIXOTO M S , DE OLIVEIRA GALV?O M F , DE MEDEIROS S R B . Cell death pathways of particulate matter toxicity[J]. Chemosphere, 2017, 188 32- 48
doi: 10.1016/j.chemosphere.2017.08.076
8 MORIWAKI K , CHAN F K . Necroptosis-independent signaling by the RIP kinases in inflammation[J]. Cell Mol Life Sci, 2016, 73 (11-12): 2325- 2334
doi: 10.1007/s00018-016-2203-4
9 NEWTON K . RIPK1 and RIPK3:critical regulators of inflammation and cell death[J]. Trends Cell Biol, 2015, 25 (6): 347- 353
doi: 10.1016/j.tcb.2015.01.001
10 ZHANG D , LIN J , HAN J . Receptor-interacting protein (RIP) kinase family[J]. Cell Mol Immunol, 2010, 7 (4): 243- 249
doi: 10.1038/cmi.2010.10
11 CABAL-HIERRO L , O'DWYER P J . TNF Signaling through RIP1 kinase enhances SN38-induced death in colon adenocarcinoma[J]. Mol Cancer Res, 2017, 15 (4): 395- 404
doi: 10.1158/1541-7786.MCR-16-0329
12 DE ALMAGRO M C , GONCHAROV T , NEWTON K et al. Cellular IAP proteins and LUBAC differentially regulate necrosome-associated RIP1 ubiquitination[J]. Cell Death Dis, 2015, 6 e1800
doi: 10.1038/cddis.2015.158
13 ALVAREZ S E , HARIKUMAR K B , HAIT N C et al. Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2[J]. Nature, 2010, 465 (7301): 1084- 1088
doi: 10.1038/nature09128
14 LIN X , CHEN Q , HUANG C et al. CYLD promotes TNF-alpha-induced cell necrosis mediated by RIP-1 in human lung cancer cells[J]. Mediators Inflamm, 2016, 2016 1542786
15 GUO X , YIN H , CHEN Y et al. TAK1 regulates caspase 8 activation and necroptotic signaling via multiple cell death checkpoints[J]. Cell Death Dis, 2016, 7 (9): e2381
doi: 10.1038/cddis.2016.294
16 SALEH D , NAJJAR M , ZELIC M et al. Kinase activities of RIPK1 and RIPK3 can direct IFN-beta synthesis induced by lipopolysaccharide[J]. J Immunol, 2017, 198 (11): 4435- 4447
doi: 10.4049/jimmunol.1601717
17 YANG S , WANG B , TANG L S et al. Pellino3 targets RIP1 and regulates the pro-apoptotic effects of TNF-alpha[J]. Nat Commun, 2013, 4 2583
doi: 10.1038/ncomms3583
18 JIN G , LAN Y , HAN F et al. Smac mimetic induced caspase independent necroptosis requires RIP1 in breast cancer[J]. Mol Med Rep, 2016, 13 (1): 359- 366
doi: 10.3892/mmr.2015.4542
19 NAJJAR M , SALEH D , ZELIC M et al. RIPK1 and RIPK3 kinases promote cell-death-independent inflammation by Toll-like receptor 4[J]. Immunity, 2016, 45 (1): 46- 59
doi: 10.1016/j.immuni.2016.06.007
20 RUIZ J , KANAGAVELU S , FLORES C et al. Systemic activation of TLR3-dependent TRIF signaling confers host defense against gram-negative bacteria in the intestine[J]. Front Cell Infect Microbiol, 2015, 5 105
21 LAWLOR K E , FELTHAM R , YABAL M et al. XIAP loss triggers RIPK3-and caspase-8-driven IL-1beta activation and cell death as a consequence of TLR-MyD88-induced cIAP1-TRAF2 degradation[J]. Cell Rep, 2017, 20 (3): 668- 682
doi: 10.1016/j.celrep.2017.06.073
22 WANG X , MAJUMDAR T , KESSLER P et al. STING requires the adaptor TRIF to trigger innate immune responses to microbial infection[J]. Cell Host Microbe, 2017, 21 (6): 788
doi: 10.1016/j.chom.2017.05.007
23 KANG S , FERNANDES-ALNEMRI T , ROGERS C et al. Caspase-8 scaffolding function and MLKL regulate NLRP3 inflammasome activation downstream of TLR3[J]. Nat Commun, 2015, 6 7515
doi: 10.1038/ncomms8515
24 HUMPHRIES F , YANG S , WANG B et al. RIP kinases:key decision makers in cell death and innate immunity[J]. Cell Death Differ, 2015, 22 (2): 225- 236
doi: 10.1038/cdd.2014.126
25 NIKSERESHT S , KHODAGHOLI F , NATEGH M et al. RIP1 inhibition rescues from LPS-induced RIP3-mediated programmed cell death, distributed energy metabolism and spatial memory impairment[J]. J Mol Neurosci, 2015, 57 (2): 219- 230
doi: 10.1007/s12031-015-0609-3
26 HE S , HUANG S , SHEN Z . Biomarkers for the detection of necroptosis[J]. Cell Mol Life Sci, 2016, 73 (11-12): 2177- 2181
doi: 10.1007/s00018-016-2192-3
27 OROZCO S , YATIM N , WERNER M R et al. RIPK1 both positively and negatively regulates RIPK3 oligomerization and necroptosis[J]. Cell Death Differ, 2014, 21 (10): 1511- 1521
doi: 10.1038/cdd.2014.76
28 ZHANG J , YANG Y , HE W et al. Necrosome core machinery:MLKL[J]. Cell Mol Life Sci, 2016, 73 (11-12): 2153- 2163
doi: 10.1007/s00018-016-2190-5
29 O'DONNELL M A , HASE H , LEGARDA D et al. NEMO inhibits programmed necrosis in an NFkappaB-independent manner by restraining RIP1[J]. PLoS One, 2012, 7 e41238
doi: 10.1371/journal.pone.0041238
30 WU X N , YANG Z H , WANG X K et al. Distinct roles of RIP1-RIP3 hetero-and RIP3-RIP3 homo-interaction in mediating necroptosis[J]. Cell Death Differ, 2014, 21 (11): 1709- 1720
doi: 10.1038/cdd.2014.77
31 NOGUSA S , THAPA R J , DILLON C P et al. RIPK3 activates parallel pathways of MLKL-driven necroptosis and FADD-mediated apoptosis to protect against influenza A virus[J]. Cell Host Microbe, 2016, 20 (1): 13- 24
doi: 10.1016/j.chom.2016.05.011
32 SHEN C , WANG C , HAN S et al. Aldehyde dehydrogenase 2 deficiency negates chronic low-to-moderate alcohol consumption-induced cardio-protecion possibly via ROS-dependent apoptosis and RIP1/RIP3/MLKL-mediated necroptosis[J]. Biochim Biophys Acta, 2017, 1863 (8): 1912- 1918
doi: 10.1016/j.bbadis.2016.11.016
33 SUMI H , INAZUKA M , MORIMOTO M et al. An inhibitor of apoptosis protein antagonist T-3256336 potentiates the antitumor efficacy of the Nedd8-activating enzyme inhibitor pevonedistat (TAK-924/MLN4924)[J]. Biochem Biophys Res Commun, 2016, 480 (3): 380- 386
doi: 10.1016/j.bbrc.2016.10.058
34 MATHUR A , HAYWARD J A , MAN S M . Molecular mechanisms of inflammasome signaling[J]. J Leukoc Biol, 2018, 103 (2): 233- 257
35 LAWLOR K E , KHAN N , MILDENHALL A et al. RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL[J]. Nat Commun, 2015, 6 6282
doi: 10.1038/ncomms7282
36 LAMKANFI M , DIXIT V M . Mechanisms and functions of inflammasomes[J]. Cell, 2014, 157 (5): 1013- 1022
doi: 10.1016/j.cell.2014.04.007
37 MORIWAKI K , BERTIN J , GOUGH P J et al. A RIPK3-caspase 8 complex mediates atypical pro-IL-1beta processing[J]. J Immunol, 2015, 194 (4): 1938- 1944
doi: 10.4049/jimmunol.1402167
38 CHI W , HUA X , CHEN X et al. Mitochondrial DNA oxidation induces imbalanced activity of NLRP3/NLRP6 inflammasomes by activation of caspase-8 and BRCC36 in dry eye[J]. J Autoimmun, 2017, 80 65- 76
doi: 10.1016/j.jaut.2017.02.006
39 WONG W W , VINCE J E , LALAOUI N et al. cIAPs and XIAP regulate myelopoiesis through cytokine production in an RIPK1-and RIPK3-dependent manner[J]. Blood, 2014, 123 (16): 2562- 2572
doi: 10.1182/blood-2013-06-510743
40 CHAVEZ-VALDEZ R , MARTIN L J , FLOCK D L et al. Necrostatin-1 attenuates mitochondrial dysfunction in neurons and astrocytes following neonatal hypoxia-ischemia[J]. Neuroscience, 2012, 219 192- 203
doi: 10.1016/j.neuroscience.2012.05.002
41 LIN J , LI H , YANG M et al. A role of RIP3-mediated macrophage necrosis in atherosclerosis development[J]. Cell Rep, 2013, 3 (1): 200- 210
doi: 10.1016/j.celrep.2012.12.012
42 SCHOCK S N , YOUNG J A , HE T H et al. Deletion of FADD in macrophages and granulocytes results in RIP3-and MyD88-dependent systemic inflammation[J]. PLoS One, 2015, 10 (4): e0124391
doi: 10.1371/journal.pone.0124391
43 NEGRONI A , COLANTONI E , PIERDOMENICO M et al. RIP3 AND pMLKL promote necroptosis-induced inflammation and alter membrane permeability in intestinal epithelial cells[J]. Dig Liver Dis, 2017, 49 (11): 1201- 1210
doi: 10.1016/j.dld.2017.08.017
44 LI J X , FENG J M , WANG Y et al. The B-Raf(V600E) inhibitor dabrafenib selectively inhibits RIP3 and alleviates acetaminophen-induced liver injury[J]. Cell Death Dis, 2014, 5 e1278
doi: 10.1038/cddis.2014.241
45 MURAKAMI Y , MATSUMOTO H , ROH M et al. Programmed necrosis, not apoptosis, is a key mediator of cell loss and DAMP-mediated inflammation in dsRNA-induced retinal degeneration[J]. Cell Death Differ, 2014, 21 (2): 270- 277
doi: 10.1038/cdd.2013.109
46 OFENGEIM D , MAZZITELLI S , ITO Y et al. RIPK1 mediates a disease-associated microglial response in Alzheimer's disease[J]. Proc Natl Acad Sci U S A, 2017, 114 (41): E8788- E8797
doi: 10.1073/pnas.1714175114
[1] 蒋曦依, 李璐, 唐慧娟, 陈天辉. 结直肠癌高危人群多因素风险预测模型及评价[J]. 浙江大学学报(医学版), 2018, 47(2): 194-200.
[2] 郑琪, 卢美萍. 儿童风湿免疫性疾病研究热点[J]. 浙江大学学报(医学版), 2018, 47(2): 213-217.
[3] 潘宗富, 方琦璐, 张轶雯, 李莉, 黄萍. 基于生物信息学的未分化甲状腺癌关键发病机制及其潜在干预靶点研究[J]. 浙江大学学报(医学版), 2018, 47(2): 187-193.
[4] 何玉贤, 郑良荣. 脊髓电刺激对心肌缺血和心肌梗死作用的研究进展[J]. 浙江大学学报(医学版), 2018, 47(2): 201-206.
[5] 吕丹丹, 应可净. 自噬在肺动脉高压发生和发展中的调节作用[J]. 浙江大学学报(医学版), 2018, 47(2): 207-212.
[6] 凌静,李红蕊,陈玮琳. 蛋白泛素化修饰调控炎性肠疾病发生和发展的研究进展[J]. 浙江大学学报(医学版), 2018, 47(1): 82-88.
[7] 刘婷婷,王凌霄,杨晓辉,姚智卿,蔡慧珍. MyD88非依赖性信号通路在枸杞多糖抑制糖尿病小鼠肿瘤坏死因子α中的作用[J]. 浙江大学学报(医学版), 2018, 47(1): 35-40.
[8] 张毓川,陈玮. Vav1对T细胞的调控作用及其与相关疾病的关系[J]. 浙江大学学报(医学版), 2018, 47(1): 75-81.
[9] 王佳静,谷海瀛. 幽门螺杆菌的基因分型技术及其应用[J]. 浙江大学学报(医学版), 2018, 47(1): 97-103.
[10] 唐慧娟,蒋曦依,楼建林,陈天辉. 基于人群的肿瘤登记数据评估患者生存的方法学研究进展[J]. 浙江大学学报(医学版), 2018, 47(1): 104-109.
[11] 魏振龙,石文贵,陈克明,周建,王鸣刚. 淫羊藿素通过CXCR4/SDF-1信号通路促进小鼠成骨细胞成熟和矿化[J]. 浙江大学学报(医学版), 2017, 46(6): 571-577.
[12] 冯梦宇,张太平,赵玉沛. 加速康复外科在胰腺外科中的应用[J]. 浙江大学学报(医学版), 2017, 46(6): 666-674.
[13] 许晶晶 等. 影像学在肿瘤精准医疗时代的机遇和挑战[J]. 浙江大学学报(医学版), 2017, 46(5): 455-461.
[14] 潘静颖 等. PET-CT与乳腺癌分子病理分型、治疗反应及预后的相关性研究进展[J]. 浙江大学学报(医学版), 2017, 46(5): 473-480.
[15] 王梦嫣 等. 耶氏肺孢子菌对磺胺类药物耐药相关基因突变的研究进展[J]. 浙江大学学报(医学版), 2017, 46(5): 563-569.