Please wait a minute...
浙江大学学报(医学版)  2018, Vol. 47 Issue (1): 82-88    DOI: 10.3785/j.issn.1008-9292.2018.02.12
综述     
蛋白泛素化修饰调控炎性肠疾病发生和发展的研究进展
凌静1(),李红蕊1,陈玮琳1,2,*()
1. 浙江大学医学院免疫学研究所, 浙江 杭州 310058
2. 深圳大学医学部免疫学系, 广东 深圳 518060
Protein ubiquitination on the regulation of inflammatory bowel disease
LING Jing1(),LI Hongrui1,CHEN Weilin1,2,*()
1. Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
2. Department of Immunology, Shenzhen University School of Medicine, Shenzhen 518060, China
 全文: PDF(1074 KB)   HTML( 6 )
摘要:

炎性肠疾病是一种慢性胃肠道功能紊乱的炎症性疾病。泛素化是一类重要的蛋白质翻译后修饰方式。近年来关于泛素化-去泛素化系统在炎性肠疾病发生和发展中的作用已成为研究热点。目前蛋白泛素化修饰调控炎性肠疾病过程所需的E3泛素连接酶中,分子生物学研究较为清楚的有环指蛋白183(RNF183)、环指蛋白20(RNF20)、Itch和锌指蛋白A20。其中RNF183可靶向核因子κB抑制蛋白α(IκBα)泛素化降解促进NF-κB活化;RNF20促进组蛋白H2B单泛素化从而下调相关炎症因子的转录;Itch促进维甲酸核孤儿受体γt泛素化降解抑制IL-17介导的肠炎;A20以其特有的泛素化和去泛素化双重活性影响炎性肠疾病的发展。本文综述了以上分子在炎性肠疾病发生、发展和转归中的作用及调控机制。

关键词: 泛素化泛素蛋白连接酶类炎性肠疾病综述    
Abstract:

Inflammatory bowel disease refers to chronic inflammatory disorders that affect the gastrointestinal tract. Ubiquitination is an important protein post-translational modification. In recent years, the research of ubiquitination-deubiquitination system in the development of inflammatory bowel disease has become a hot spot. Up to now, the E3 ubiquitin ligases such as ring finger protein 183 (RNF183), RNF20, Itch and A20 were well studied in inflammatory bowel disease. RNF183 promotes the activation of the NF-κB pathway by increasing the ubiquitination and degradation of IκBα; RNF20 drives histone H2B monoubiquitylation, downregulates a panel of inflammation-associated genes; Itch inhibits IL-17-mediated colon inflammation by retinoid acid related orphan receptor γt ubiquitination; A20 has ubiquitinating-deubiquitinating activity to regulates colon inflammation. This article reviews the role and regulatory mechanism of RNF183, RNF20, Itch and A20 in the pathogenesis of inflammatory bowel disease.

Key words: Ubiquitination    Ubiquitin-protein ligases    Inflammatory bowel diseases    Review
收稿日期: 2018-01-06 出版日期: 2018-06-12
CLC:  R392  
基金资助: 浙江省自然科学基金(LZ17H100001);国家自然科学基金(31670914)
通讯作者: 陈玮琳     E-mail: lingjing@zju.edu.cn;cwl@zju.edu.cn
作者简介: 凌静(1993-), 女, 硕士研究生, 主要从事感染免疫学研究; E-mail:lingjing@zju.edu.cn; https://orcid.org/0000-0002-9163-2542
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
凌静
李红蕊
陈玮琳

引用本文:

凌静,李红蕊,陈玮琳. 蛋白泛素化修饰调控炎性肠疾病发生和发展的研究进展[J]. 浙江大学学报(医学版), 2018, 47(1): 82-88.

LING Jing,LI Hongrui,CHEN Weilin. Protein ubiquitination on the regulation of inflammatory bowel disease. J Zhejiang Univ (Med Sci), 2018, 47(1): 82-88.

链接本文:

http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2018.02.12        http://www.zjujournals.com/med/CN/Y2018/V47/I1/82

图 1  RNF183、RNF20、Itch和A20对炎性肠疾病发生、发展的调控机制
1 MALOY K J , POWRIE F . Intestinal homeostasis and its breakdown in inflammatory bowel disease[J]. Nature, 2011, 474 (7351): 298- 306
doi: 10.1038/nature10208
2 YU Q , ZHANG S , CHAO K et al. E3 Ubiquitin ligase RNF183 is a novel regulator in inflammatory bowel disease[J]. J Crohns Colitis, 2016, 10 (6): 713- 725
doi: 10.1093/ecco-jcc/jjw023
3 GEREMIA A , BIANCHERI P , ALLAN P et al. Innate and adaptive immunity in inflammatory bowel disease[J]. Autoimmun Rev, 2014, 13 (1): 3- 10
doi: 10.1016/j.autrev.2013.06.004
4 ROY U , EJC G , ILJAZOVIC A et al. Distinct microbial communities trigger colitis development upon intestinal barrier damage via innate or adaptive immune cells[J]. Cell Rep, 2017, 21 (4): 994- 1008
doi: 10.1016/j.celrep.2017.09.097
5 NG S C , SHI H Y , HAMIDI N et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century:a systematic review of population-based studies[J]. Lancet, 2018, 390 (10114): 2769- 2778
6 CHEN J , CHEN Z J . Regulation of NF-kappaB by ubiquitination[J]. Cur Opin Immunol, 2013, 25 (1): 4- 12
doi: 10.1016/j.coi.2012.12.005
7 SWATEK K N , KOMANDER D . Ubiquitin modifications[J]. Cell Res, 2016, 26 (4): 399- 422
doi: 10.1038/cr.2016.39
8 SCHULMAN B A , HARPER J W . Ubiquitin-like protein activation by E1 enzymes:the apex for downstream signalling pathways[J]. Nat Rev Mol Cell Biol, 2009, 10 (5): 319- 331
9 YE Y , RAPE M . Building ubiquitin chains:E2 enzymes at work[J]. Nat Rev Mol Cell Biol, 2009, 10 (11): 755- 764
doi: 10.1038/nrm2780
10 DESHAIES R J , JOAZEIRO C A . RING domain E3 ubiquitin ligases[J]. Annu Rev Biochem, 2009, 78 399- 434
doi: 10.1146/annurev.biochem.78.101807.093809
11 SONG H , LIU B , HUAI W et al. The E3 ubiquitin ligase TRIM31 attenuates NLRP3 inflammasome activation by promoting proteasomal degradation of NLRP3[J]. Nat Commun, 2016, 7 13727
doi: 10.1038/ncomms13727
12 ZAKI M H , BOYD K L , VOGEL P et al. The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis[J]. Immunity, 2010, 32 (3): 379- 391
doi: 10.1016/j.immuni.2010.03.003
13 SHU X S , ZHAO Y , ZHONG L et al. The epigenetic modifier PBRM1 restricts the basal activity of the innate immune system by repressing retinoic acid-inducible gene-l-like receptor signalling and is a potential prognostic biomarker for colon cancer[J]. J Pathol, 2018, 244 (1): 36- 48
doi: 10.1002/path.4986
14 CAO Z , CONWAY K L , HEATH R J et al. Ubiquitin ligase TRIM62 regulates CARD9-mediated anti-fungal immunity and intestinal inflammation[J]. Immunity, 2015, 43 (4): 715- 726
doi: 10.1016/j.immuni.2015.10.005
15 YANG S , WANG B , HUMPHRIES F et al. Pellino3 ubiquitinates RIP2 and mediates Nod2-induced signaling and protective effects in colitis[J]. Nat Immunol, 2013, 14 (9): 927- 936
doi: 10.1038/ni.2669
16 NAKAMURA N . The role of the transmembrane RING finger proteins in cellular and organelle function[J]. Membranes(Basel), 2011, 1 (4): 354- 393
17 HEUZé M L , LAMSOUL I , MOOG-LUTZ C et al. Ubiquitin-mediated proteasomal degradation in normal and malignant hematopoiesis[J]. Blood Cells Mol Dis, 2008, 40 (2): 200- 210
doi: 10.1016/j.bcmd.2007.07.011
18 DUTTA J , FAN Y , GUPTA N et al. Current insights into the regulation of programmed cell death by NF-kappaB[J]. Oncogene, 2006, 25 (51): 6800- 6816
doi: 10.1038/sj.onc.1209938
19 GENG R , TAN X , WU J et al. RNF183 promotes proliferation and metastasis of colorectal cancer cells via activation of NF-kappaB-IL-8 axis[J]. Cell Death Dis, 2017, 8 (8): e2994
doi: 10.1038/cddis.2017.400
20 GENG R , TAN X , ZUO Z et al. Synthetic lethal short hairpin RNA screening reveals that ring finger protein 183 confers resistance to trametinib in colorectal cancer cells[J]. Chin J Cancer, 2017, 36 (1): 63
doi: 10.1186/s40880-017-0228-1
21 CAMPOS E I , REINBERG D . Histones:annotating chromatin[J]. Annu Rev Genet, 2009, 43 559- 599
doi: 10.1146/annurev.genet.032608.103928
22 TARCIC O , PATERAS I S , COOKS T et al. RNF20 links histone H2B ubiquitylation with inflammation and inflammation-associated cancer[J]. Cell Rep, 2016, 14 (6): 1462- 1476
doi: 10.1016/j.celrep.2016.01.020
23 MINSKY N , SHEMA E , FIELD Y et al. Monoubiquitinated H2B is associated with the transcribed region of highly expressed genes in human cells[J]. Nat Cell Biol, 2008, 10 (4): 483- 488
doi: 10.1038/ncb1712
24 PAVRI R , ZHU B , LI G et al. Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase Ⅱ[J]. Cell, 2006, 125 (4): 703- 717
doi: 10.1016/j.cell.2006.04.029
25 KATOH H , WANG D , DAIKOKU T et al. CXCR2-expressing myeloid-derived suppressor cells are essential to promote colitis-associated tumorigenesis[J]. Cancer Cell, 2013, 24 (5): 631- 644
doi: 10.1016/j.ccr.2013.10.009
26 WU P , WU D , NI C et al. γδT17 cells promote the accumulation and expansion of myeloid-derived suppressor cells in human colorectal cancer[J]. Immunity, 2014, 40 (5): 785- 800
doi: 10.1016/j.immuni.2014.03.013
27 GRIVENNIKOV S I , WANG K , MUCIDA D et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth[J]. Nature, 2012, 491 (7423): 254- 258
doi: 10.1038/nature11465
28 DONG C . Th17 cells in development:an updated view of their molecular identity and genetic programming[J]. Nat Rev Immunol, 2008, 8 (5): 337- 348
doi: 10.1038/nri2295
29 ZHANG F , MENG G , STROBER W . Interactions among the transcription factors Runx1, RORγ and Foxp3 regulate the differentiation of interleukin 17-producing T cells[J]. Nat Immunol, 2008, 9 (11): 1297- 1306
doi: 10.1038/ni.1663
30 KATHANIA M , KHARE P , ZENG M et al. Itch inhibits IL-17-mediated colon inflammation and tumorigenesis by ROR-gammat ubiquitination[J]. Nat Immunol, 2016, 17 (8): 997- 1004
doi: 10.1038/ni.3488
31 TAO M , SCACHERI P C , MARINIS J M et al. ITCH directly K63-ubiquitinates the NOD2 binding protein, RIP2, to influence inflammatory signaling pathways[J]. Curr Biol, 2009, 19 (15): 1255- 1263
doi: 10.1016/j.cub.2009.06.038
32 LATELLA G , DI G J , FLATI V et al. Mechanisms of initiation and progression of intestinal fibrosis in IBD[J]. Scand J Gastroenterol, 2015, 50 (1): 53- 65
doi: 10.3109/00365521.2014.968863
33 PAUL J , SINGH A K , KATHANIA M et al. IL-17-driven intestinal fibrosis is inhibited by Itch-mediated ubiquitination of HIC-5[J]. Mucosal Immunol, 2018, 11 (2): 427- 436
doi: 10.1038/mi.2017.53
34 VEREECKE L , BEYAERT R , VAN LOO G . The ubiquitin-editing enzyme A20(TNFAIP3) is a central regulator of immunopathology[J]. Trends Immunol, 2009, 30 (8): 383- 391
doi: 10.1016/j.it.2009.05.007
35 HOLLERAN G , LOPETUSO L , PETITO V et al. The innate and adaptive immune system as targets for biologic therapies in inflammatory bowel disease[J]. Int J Mol Sci, 2017, 18 (10): 2020
doi: 10.3390/ijms18102020
36 YE D , MA I , MA T Y . Molecular mechanism of tumor necrosis factor-alpha modulation of intestinal epithelial tight junction barrier[J]. Am J Physiol Gastrointest Liver Physiol, 2006, 290 (3): G496- G504
doi: 10.1152/ajpgi.00318.2005
37 BAO C H , WU L Y , SHI Y et al. Moxibustion down-regulates colonic epithelial cell apoptosis and repairs tight junctions in rats with Crohn's disease[J]. World J Gastroenterol, 2011, 17 (45): 4960- 4970
doi: 10.3748/wjg.v17.i45.4960
38 EVANS P C , OVAA H , HAMON M et al. Zinc-finger protein A20, a regulator of inflammation and cell survival, has de-ubiquitinating activity[J]. Biochem J, 2004, 378 (Pt 3): 727- 734
39 KOLODZIEJ L E , LODOLCE J P , CHANG J E et al. TNFAIP3 maintains intestinal barrier function and supports epithelial cell tight junctions[J]. PLoS One, 2011, 6 (10): e26352
doi: 10.1371/journal.pone.0026352
[1] 蒋曦依, 李璐, 唐慧娟, 陈天辉. 结直肠癌高危人群多因素风险预测模型及评价[J]. 浙江大学学报(医学版), 2018, 47(2): 194-200.
[2] 何玉贤, 郑良荣. 脊髓电刺激对心肌缺血和心肌梗死作用的研究进展[J]. 浙江大学学报(医学版), 2018, 47(2): 201-206.
[3] 吕丹丹, 应可净. 自噬在肺动脉高压发生和发展中的调节作用[J]. 浙江大学学报(医学版), 2018, 47(2): 207-212.
[4] 丁京京,卢韵碧. 受体相互作用蛋白家族在炎症中的作用研究进展[J]. 浙江大学学报(医学版), 2018, 47(1): 89-96.
[5] 唐慧娟,蒋曦依,楼建林,陈天辉. 基于人群的肿瘤登记数据评估患者生存的方法学研究进展[J]. 浙江大学学报(医学版), 2018, 47(1): 104-109.
[6] 张毓川,陈玮. Vav1对T细胞的调控作用及其与相关疾病的关系[J]. 浙江大学学报(医学版), 2018, 47(1): 75-81.
[7] 王佳静,谷海瀛. 幽门螺杆菌的基因分型技术及其应用[J]. 浙江大学学报(医学版), 2018, 47(1): 97-103.
[8] 冯梦宇,张太平,赵玉沛. 加速康复外科在胰腺外科中的应用[J]. 浙江大学学报(医学版), 2017, 46(6): 666-674.
[9] 许晶晶 等. 影像学在肿瘤精准医疗时代的机遇和挑战[J]. 浙江大学学报(医学版), 2017, 46(5): 455-461.
[10] 潘静颖 等. PET-CT与乳腺癌分子病理分型、治疗反应及预后的相关性研究进展[J]. 浙江大学学报(医学版), 2017, 46(5): 473-480.
[11] 张思影 等. CT和磁共振参数反应图在肿瘤精准疗效评估中的研究进展[J]. 浙江大学学报(医学版), 2017, 46(5): 468-472.
[12] 潘瑶 等. 胰腺癌的影像学精准诊断与评估[J]. 浙江大学学报(医学版), 2017, 46(5): 462-467.
[13] 王梦嫣 等. 耶氏肺孢子菌对磺胺类药物耐药相关基因突变的研究进展[J]. 浙江大学学报(医学版), 2017, 46(5): 563-569.
[14] 李艳蝶 等. NLRP3炎症小体与儿童自身炎症性疾病研究进展[J]. 浙江大学学报(医学版), 2017, 46(4): 449-453.
[15] 王丽雅 等. 借助辅助生殖技术出生子代的安全性研究进展[J]. 浙江大学学报(医学版), 2017, 46(3): 279-284.