Please wait a minute...
浙江大学学报(医学版)  2018, Vol. 47 Issue (1): 75-81    DOI: 10.3785/j.issn.1008-9292.2018.02.11
综述     
Vav1对T细胞的调控作用及其与相关疾病的关系
张毓川(),陈玮*()
浙江大学医学院免疫学研究所, 浙江 杭州 310058
Regulatory effect of Vav1 on T cells and its relation to clinical diseases
ZHANG Yuchuan(),CHEN Wei*()
Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
 全文: PDF(1054 KB)   HTML( 7 )
摘要:

Vav1作为T细胞受体下游的关键信号分子,拥有鸟苷酸交换因子功能的催化核心结构DH-PH-ZF和接头蛋白功能的SH3-SH2-SH3结构,因而在T细胞发育、活化、增殖和功能发挥等各个阶段,以及在自身免疫性疾病、移植排斥和肿瘤等发生、发展中具有不同的调控作用,可为临床治疗提供潜在靶点。本文综述了Vav1对T细胞的调控作用及其与相关疾病的关系。

关键词: T淋巴细胞/生理学鸟嘌呤核苷酸交换因子类/生理学自身免疫疾病移植物排斥淋巴瘤, T细胞综述    
Abstract:

Vav1, as a key downstream signaling molecule of T cell receptor, includes a catalytic core DH-PH-ZF domain with the function as guanine nucleotide exchange factor (GEF), and a SH3-SH2-SH3 domain with the function as adaptor protein. These two structures of Vav1 play different roles in the development, activation, proliferation and function of T cells, and thereby exert the different regulatory effect on the occurrence and development of autoimmune disease, graft rejection, cancer and other clinical conditions, implicating that Vav1 might be a potential therapeutic target for these diseases. This paper reviews the role of Vav1 in T cells and the occurrence of related diseases.

Key words: T-lymphocytes/physiology    Guanine nucleotide exchange factors/physiology    Autoimmune diseases    Graft rejection    Lymphoma, T-cell    Review
收稿日期: 2017-11-20 出版日期: 2018-06-12
CLC:  R392  
基金资助: 国家自然科学基金(31370879)
通讯作者: 陈玮     E-mail: alstraybird@163.com;chenwei566@zju.edu.cn
作者简介: 张毓川(1991-), 女, 硕士研究生, 主要从事CD8+T细胞功能研究; E-mail:alstraybird@163.com; https://orcid.org/0000-0002-2474-4026
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张毓川
陈玮

引用本文:

张毓川,陈玮. Vav1对T细胞的调控作用及其与相关疾病的关系[J]. 浙江大学学报(医学版), 2018, 47(1): 75-81.

ZHANG Yuchuan,CHEN Wei. Regulatory effect of Vav1 on T cells and its relation to clinical diseases. J Zhejiang Univ (Med Sci), 2018, 47(1): 75-81.

链接本文:

http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2018.02.11        http://www.zjujournals.com/med/CN/Y2018/V47/I1/75

图 1  Vav1结构示意图
1 KATZAV S , MARTIN-ZANCA D , BARBACID M . vav, a novel human oncogene derived from a locus ubiquitously expressed in hematopoietic cells[J]. EMBO J, 1989, 8 (8): 2283- 2290
2 HENSKE E P , SHORT M P , JOZWIAK S et al. Identification of VAV2 on 9q34 and its exclusion as the tuberous sclerosis gene TSC1[J]. Ann Hum Genet, 1995, 59 (Pt 1): 25- 37
3 MOVILLA N , BUSTELO X R . Biological and regulatory properties of Vav-3, a new member of the Vav family of oncoproteins[J]. Mol Cell Biol, 1999, 19 (11): 7870- 7885
doi: 10.1128/MCB.19.11.7870
4 JAGODIC M , COLACIOS C , NOHRA R et al. A role for VAV1 in experimental autoimmune encephalomyelitis and multiple sclerosis[J]. Sci Transl Med, 2009, 1 (10): 10ra21
5 HAUBERT D , LI J , SAVELIEV A et al. Vav1 GEF activity is required for T cell mediated allograft rejection[J]. Transpl Immunol, 2012, 26 (4): 212- 219
doi: 10.1016/j.trim.2012.03.003
6 BUSTELO X R . Vav family exchange factors:an integrated regulatory and functional view[J]. Small GTPases, 2014, 5 (2): 9
7 KSIONDA O , SAVELIEV A , K?CHL R et al. Mechanism and function of Vav1 localisation in TCR signalling[J]. J Cell Sci, 2012, 125 (Pt 22): 5302- 5314
8 LI S Y , DU M J , WAN Y J et al. The N-terminal 20-amino acid region of guanine nucleotide exchange factor Vav1 plays a distinguished role in T cell receptor-mediated calcium signaling[J]. J Biol Chem, 2013, 288 (6): 3777- 3785
doi: 10.1074/jbc.M112.426221
9 MOVILLA N , DOSIL M , ZHENG Y et al. How Vav proteins discriminate the GTPases Rac1 and RhoA from Cdc42[J]. Oncogene, 2001, 20 (56): 8057- 8065
doi: 10.1038/sj.onc.1205000
10 RAMOS-MORALES F , ROMERO F , SCHWEIGHOFFER F et al. The proline-rich region of Vav binds to Grb2 and Grb3-3[J]. Oncogene, 1995, 11 (8): 1665- 1669
11 MARGOLIS B , HU P , KATZAV S et al. Tyrosine phosphorylation of vav proto-oncogene product containing SH2 domain and transcription factor motifs[J]. Nature, 1992, 356 (6364): 71- 74
doi: 10.1038/356071a0
12 SMITH-GARVIN J E , KORETZKY G A , JORDAN M S . T cell activation[J]. Annu Rev Immunol, 2009, 27 591- 619
doi: 10.1146/annurev.immunol.021908.132706
13 KASSEM S , GAUD G , BERNARD I et al. A natural variant of the T cell receptor-signaling molecule Vav1 reduces both effector T cell functions and susceptibility to neuroinflammation[J]. PLoS Genet, 2016, 12 (7): e1006185
doi: 10.1371/journal.pgen.1006185
14 HAN J , LUBY-PHELPS K , DAS B et al. Role of substrates and products of PI 3-kinase in regulating activation of Rac-related guanosine triphosphatases by Vav[J]. Science, 1998, 279 (5350): 558- 560
doi: 10.1126/science.279.5350.558
15 SAVELIEV A , VANES L , KSIONDA O et al. Function of the nucleotide exchange activity of vav1 in T cell development and activation[J]. Sci Signal, 2009, 2 (101): ra83
16 COLACIOS C , CASEMAYOU A , DEJEAN A S et al. The p.Arg63Trp polymorphism controls Vav1 functions and Foxp3 regulatory T cell development[J]. J Exp Med, 2011, 208 (11): 2183- 2191
doi: 10.1084/jem.20102191
17 TYBULEWICZ V L , ARDOUIN L , PRISCO A et al. Vav1:a key signal transducer downstream of the TCR[J]. Immunol Rev, 2003, 192 42- 52
doi: 10.1034/j.1600-065X.2003.00032.x
18 KORN T , FISCHER K D , GIRKONTAITE I et al. Vav1-deficient mice are resistant to MOG-induced experimental autoimmune encephalomyelitis due to impaired antigen priming[J]. J Neuroimmunol, 2003, 139 (1-2): 17- 26
doi: 10.1016/S0165-5728(03)00128-0
19 BERNARD I , FOURNIé G J , SAOUDI A . Genomics studies of immune-mediated diseases using the BN-LEW rat model[J]. Methods Mol Biol, 2010, 597 389- 402
doi: 10.1007/978-1-60327-389-3
20 PEDROS C , GAUD G , BERNARD I et al. An epistatic interaction between Themis1 and Vav1 modulates regulatory T cell function and inflammatory bowel disease development[J]. J Immunol, 2015, 195 (4): 1608- 1616
doi: 10.4049/jimmunol.1402562
21 NANKIVELL B J , ALEXANDER S I . Rejection of the kidney allograft[J]. N Engl J Med, 2010, 363 (15): 1451- 1462
doi: 10.1056/NEJMra0902927
22 WECKBECKER G , BRUNS C , FISCHER K D et al. Strongly reduced alloreactivity and long-term survival times of cardiac allografts in Vav1-and Vav1/Vav2-knockout mice[J]. Transpl Int, 2007, 20 (4): 353- 364
doi: 10.1111/tri.2007.20.issue-4
23 WANG S , DIAO H , GUAN Q et al. Enhanced cardiac allograft survival by Vav1-Rac signaling blockade in a mouse model[J]. Transpl Immunol, 2007, 18 (1): 53- 61
doi: 10.1016/j.trim.2007.03.007
24 ABATE F , DA S A C , ZAIRIS S et al. Activating mutations and translocations in the guanine exchange factor VAV1 in peripheral T-cell lymphomas[J]. Proc Natl Acad Sci U S A, 2017, 114 (4): 764- 769
doi: 10.1073/pnas.1608839114
25 KATZAV S . Vav1:a Dr. Jekyll and Mr. Hyde protein-good for the hematopoietic system, bad for cancer[J]. Oncotarget, 2015, 6 (30): 28731- 28742
26 BARREIRA M , FABBIANO S , COUCEIRO J R et al. The C-terminal SH3 domain contributes to the intramolecular inhibition of Vav family proteins[J]. Sci Signal, 2014, 7 (321): ra35
doi: 10.1126/scisignal.2004993
27 ROSSMAN K L , DER C J , SONDEK J . GEF means go:turning on RHO GTPases with guanine nucleotide-exchange factors[J]. Nat Rev Mol Cell Biol, 2005, 6 (2): 167- 180
doi: 10.1038/nrm1587
28 ROBLES-VALERO J , LORENZO-MARTíN L F , MENACHO-MáRQUEZ M et al. A paradoxical tumor-suppressor role for the Rac1 exchange factor Vav1 in T cell acute lymphoblastic leukemia[J]. Cancer Cell, 2017, 32 (5): 608- 623.e9
doi: 10.1016/j.ccell.2017.10.004
29 PUI C H , ROBISON L L , LOOK A T . Acute lymphoblastic leukaemia[J]. Lancet, 2008, 371 (9617): 1030- 1043
doi: 10.1016/S0140-6736(08)60457-2
30 SARMENTO L M , BARATA J T . Therapeutic potential of Notch inhibition in T-cell acute lymphoblastic leukemia:rationale, caveats and promises[J]. Expert Rev Anticancer Ther, 2011, 11 (9): 1403- 1415
doi: 10.1586/era.11.73
31 ROBLES-VALERO J , LORENZO-MARTíN L F , FERNáNDEZ-PISONERO I et al. Rho guanosine nucleotide exchange factors are not such bad guys after all in cancera[J]. Small GTPases, 2018, 1- 7
32 AZIZI G , REZAEI N , KIAEE F et al. T-Cell Abnormalities in Common Variable Immunodeficiency[J]. J Investig Allergol Clin Immunol, 2016, 26 (4): 233- 243
doi: 10.18176/jiaci
33 PACCANI S R , BONCRISTIANO M , PATRUSSI L et al. Defective Vav expression and impaired F-actin reorganization in a subset of patients with common variable immunodeficiency characterized by T-cell defects[J]. Blood, 2005, 106 (2): 626- 634
doi: 10.1182/blood-2004-05-2051
34 FISCHER M B , HAUBER I , EGGENBAUER H et al. A defect in the early phase of T-cell receptor-mediated T-cell activation in patients with common variable immunodeficiency[J]. Blood, 1994, 84 (12): 4234- 4241
[1] 蒋曦依, 李璐, 唐慧娟, 陈天辉. 结直肠癌高危人群多因素风险预测模型及评价[J]. 浙江大学学报(医学版), 2018, 47(2): 194-200.
[2] 郑琪, 卢美萍. 儿童风湿免疫性疾病研究热点[J]. 浙江大学学报(医学版), 2018, 47(2): 213-217.
[3] 何玉贤, 郑良荣. 脊髓电刺激对心肌缺血和心肌梗死作用的研究进展[J]. 浙江大学学报(医学版), 2018, 47(2): 201-206.
[4] 吕丹丹, 应可净. 自噬在肺动脉高压发生和发展中的调节作用[J]. 浙江大学学报(医学版), 2018, 47(2): 207-212.
[5] 周海金,夏萍,胡兴越. 视神经脊髓炎谱系疾病、系统性红斑狼疮和胸腺瘤共病一例[J]. 浙江大学学报(医学版), 2018, 47(1): 71-74.
[6] 凌静,李红蕊,陈玮琳. 蛋白泛素化修饰调控炎性肠疾病发生和发展的研究进展[J]. 浙江大学学报(医学版), 2018, 47(1): 82-88.
[7] 丁京京,卢韵碧. 受体相互作用蛋白家族在炎症中的作用研究进展[J]. 浙江大学学报(医学版), 2018, 47(1): 89-96.
[8] 唐慧娟,蒋曦依,楼建林,陈天辉. 基于人群的肿瘤登记数据评估患者生存的方法学研究进展[J]. 浙江大学学报(医学版), 2018, 47(1): 104-109.
[9] 王佳静,谷海瀛. 幽门螺杆菌的基因分型技术及其应用[J]. 浙江大学学报(医学版), 2018, 47(1): 97-103.
[10] 冯梦宇,张太平,赵玉沛. 加速康复外科在胰腺外科中的应用[J]. 浙江大学学报(医学版), 2017, 46(6): 666-674.
[11] 许晶晶 等. 影像学在肿瘤精准医疗时代的机遇和挑战[J]. 浙江大学学报(医学版), 2017, 46(5): 455-461.
[12] 潘静颖 等. PET-CT与乳腺癌分子病理分型、治疗反应及预后的相关性研究进展[J]. 浙江大学学报(医学版), 2017, 46(5): 473-480.
[13] 张思影 等. CT和磁共振参数反应图在肿瘤精准疗效评估中的研究进展[J]. 浙江大学学报(医学版), 2017, 46(5): 468-472.
[14] 潘瑶 等. 胰腺癌的影像学精准诊断与评估[J]. 浙江大学学报(医学版), 2017, 46(5): 462-467.
[15] 王梦嫣 等. 耶氏肺孢子菌对磺胺类药物耐药相关基因突变的研究进展[J]. 浙江大学学报(医学版), 2017, 46(5): 563-569.