Please wait a minute...
浙江大学学报(农业与生命科学版)  2019, Vol. 45 Issue (2): 211-220    DOI: 10.3785/j.issn.1008-9209.2018.03.161
资源利用与环境保护     
荒漠草原不同大小“土岛”生境中短花针茅种群小尺度点格局分析
薛毅1(),王兴2,宋乃平1(),随金明1,陈娟1
1. 宁夏大学西北土地退化与生态恢复国家重点实验室培育基地,银川 750021
2. 宁夏大学农学院,银川 750021
Fine-scale spatial point patterns of Stipa breviflora population at different “Soil Island” habitat sizes in desert steppe
Yi XUE1(),Xing WANG2,Naiping SONG1(),Jinming SUI1,Juan CHEN1
1. Breeding Base of State Key Laboratory for Preventing Land Degradation and Ecological Restoration, Ningxia University, Yinchuan 750021, China
2. Agricultural School, Ningxia University, Yinchuan 750021, China
 全文: PDF(1076 KB)   HTML ( HTML
摘要:

荒漠草原经过长期人为、自然等因素的干扰引起原始生境退化、破碎化,形成原生硬质灰钙土斑块并散布在广大沙化土地中,类似岛状的土被结构,我们称之为“土岛”。为研究不同大小“土岛”生境对优势种短花针茅种群空间格局的影响,2016年9月在宁夏盐池县杨寨子村选取大(200~300 m2)、中(约100 m2)、小(约50 m2)“土岛”各3个,共9个“土岛”,然后在每个“土岛”上选取一个2 m×2 m样方开展研究。结果表明:1)所有“土岛”上的短花针茅种群均处于老龄衰退阶段,幼龄小苗极少。2)随着“土岛”面积增大,“土岛”内部0~40 cm土层的土壤黏粉粒含量呈现增加趋势(P<0.05),细砂粒含量逐渐减少(P<0.05),土壤有机碳含量在不同土层均有所增加(P<0.05)。3)小“土岛”上的短花针茅种群主要表现为聚集分布,随着“土岛”面积的增大,短花针茅种群的生态对策发生转变,在大、中“土岛”上变成以随机分布为主。4)在各“土岛”上,短花针茅都为优势种,随着“土岛”面积增大,短花针茅种群密度表现为先增加后减小,推测短花针茅的最适“土岛”生境面积大约为100 m2。此次研究表明,随着“土岛”生境不断缩小,短花针茅种群点格局从随机分布变为聚集分布,种群的生存状况受到极大威胁,说明荒漠草原典型植被的这种原始生境破碎化可能会引起种群的衰退甚至消失。今后在对荒漠草原的原始植被进行保护时,首先应当保障其生境的完整性、连续性,进而保障典型植被种群的规模。

关键词: 荒漠草原短花针茅点格局土岛土壤    
Abstract:

Through long-term natural factors and human disturbance, the natural habitats of desert steppe become degradation and fragmentation, forming natural hard sierozem patches which were similar to islands in the extensive sandy desertified land, which were named as “Soil Island”. In order to study the influence of different “Soil Island” habitat areas on the spatial pattern of Stipa breviflora, we chose three large “Soil Island” (200-300 m2), three middle “Soil Island” (about 100 m2) and three small “Soil Island” (about 50 m2) habitats, and set one 2 m×2 m sample plot in each “Soil Island” in September 2016. The results showed that: 1) S. breviflora population was in the aging and declining stage in the all of “Soil Island” habitats, with very few young seedlings. 2) With the increase of the area of “Soil Island”, the content of clay silts in the 0-40 cm soil layer increased (P<0.05), and the content of fine sand in the 0-40 cm soil layer decreased (P<0.05), and the content of soil organic content (SOC) in different soil layers increased (P<0.05). 3) With the increase of the area of “Soil Island”, the ecological strategy of S. breviflora population changed. In the small “Soil Island”, the spatial patterns of S. breviflora aggregated mainly. But in the large “Soil Island” and middle “Soil Island”, the spatial patterns of S. breviflora were mainly random. 4) In each “Soil Island”, S. breviflora was the dominant species. With the increase of the area of “Soil Island”, the density of S. breviflora population increased first and then decreased, so we guessed that the optimum area of “Soil Island” habitat was about 100 m2. In summary, with the continuous reduce of the habitat areas of “Soil Island”, the spatial pattern of S. breviflora population changes from a random distribution to an aggregated distribution, and its population size and survival are under great threat, which indicates that the fragmentation of typical vegetation habitat will make population decline or even disappear. In the future, the integrity and continuity of the habitat should be guaranteed first, and then the size of the typical vegetation population could be guaranteed for the protection of the native vegetation of desert steppe.

Key words: desert steppe    Stipa breviflora    point pattern    Soil Island    soil
收稿日期: 2018-03-16 出版日期: 2019-04-25
CLC:  Q 948.15  
基金资助: 国家自然科学基金(41461046);宁夏高等学校一流学科建设(生态学)项目(NXYLXK2017B06);国家重点研发计划(2016YFC0500709);宁夏大学研究生创新项目(GIP2018072)
通讯作者: 宋乃平     E-mail: xy.0316@163.com;songnp@163.com
作者简介: 薛毅(https://orcid.org/0000-0001-5307-4511),E-mail: xy.0316@163.com|宋乃平(https://orcid.org/0000-0003-0444-498X),Tel: +86-951-2062838,E-mail: songnp@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
薛毅
王兴
宋乃平
随金明
陈娟

引用本文:

薛毅,王兴,宋乃平,随金明,陈娟. 荒漠草原不同大小“土岛”生境中短花针茅种群小尺度点格局分析[J]. 浙江大学学报(农业与生命科学版), 2019, 45(2): 211-220.

Yi XUE,Xing WANG,Naiping SONG,Jinming SUI,Juan CHEN. Fine-scale spatial point patterns of Stipa breviflora population at different “Soil Island” habitat sizes in desert steppe. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(2): 211-220.

链接本文:

http://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2018.03.161        http://www.zjujournals.com/agr/CN/Y2019/V45/I2/211

样地

Plot

短花针茅 Stipa breviflora

群落类型

Community type

高度

Height/cm

盖度

coverage/%

重要值

Important value

密度/(株/m2

Density/(plant/m2)

A小“土岛”

Small “Soil Island” A

8.606.20.2013.50

短花针茅+猪毛蒿

Stipa breviflora+Artemisia scoparia

A中“土岛”

Middle “Soil Island” A

11.2716.80.3363.25

短花针茅+胡枝子

Stipa breviflora+Lespedeza floribunda

A大“土岛”

Large “Soil Island” A

9.7310.60.4248.50

短花针茅+胡枝子

Stipa breviflora+Lespedeza floribunda

B小“土岛”

Small “Soil Island” B

9.277.40.3524.25

短花针茅+猪毛蒿

Stipa breviflora+Artemisia scoparia

B中“土岛”

Middle “Soil Island” B

9.0712.60.3035.25

短花针茅+胡枝子

Stipa breviflora+Lespedeza floribunda

B大“土岛”

Large “Soil Island” B

9.939.20.3620.25

短花针茅+胡枝子

Stipa breviflora+Lespedeza floribunda

C小“土岛”

Small “Soil Island” C

5.3320.20.3337.25

短花针茅+胡枝子

Stipa breviflora+Lespedeza floribunda

C中“土岛”

Middle “Soil Island” C

6.009.80.2645.50

短花针茅+猪毛蒿

Stipa breviflora+Artemisia scoparia

C大“土岛”

Large “Soil Island” C

6.934.50.1620.00

短花针茅+蓍状亚菊

Stipa breviflora+Ajania achilloides

表1  各“土岛”的主要特征
样地 Plot等级1) Class 1)
a(0~1.0 cm)b(1.1~2.0 cm)c(2.1~7.0 cm)d(≥7.1 cm)
A小“土岛” Small “Soil Island” A00252
A中“土岛” Middle “Soil Island” A0117235
A大“土岛” Large “Soil Island” A11080103
B小“土岛” Small “Soil Island” B001582
B中“土岛” Middle “Soil Island” B6010125
B大“土岛” Large “Soil Island” B00180
C小“土岛” Small “Soil Island” C0015134
C中“土岛” Middle “Soil Island” C0044138
C大“土岛” Large “Soil Island” C00971
表2  针茅种群的大小组成
图1  A“土岛”的短花针茅种群点格局分析
图2  B“土岛”的短花针茅种群点格局分析
图3  C“土岛”的短花针茅种群点格局分析

土层

Soil layer/cm

样地

Plot

黏粉粒

Clay/mm

细砂粒

Fine sand/mm

中砂粒

Middle sand/mm

粗砂粒

Thick sand/mm

<0.0500.050~<0.250.25~<1.001.00~<2.00
0~10A小“土岛” Small “Soil Island” A38.79b47.15a14.04a0.01a
A中“土岛” Middle “Soil Island” A38.89b52.99a8.10b0.00a
A大“土岛” Large “Soil Island” A54.52a36.53b8.94b0.00a
B小“土岛” Small “Soil Island” B41.01a54.41b4.57b0.00a
B中“土岛” Middle “Soil Island” B30.22b59.32a10.09a0.36a
B大“土岛” Large “Soil Island” B48.50a47.51c3.98b0.00a
C小“土岛” Small “Soil Island” C37.55c56.54a5.89a0.01a
C中“土岛” Middle “Soil Island” C44.09b52.03b3.87b0.00a
C大“土岛” Large “Soil Island” C55.94a42.01b2.05c0.00a
>10~20A小“土岛” Small “Soil Island” A43.00b42.61b14.37a0.00a
A中“土岛” Middle “Soil Island” A42.71b49.74a7.55b0.00a
A大“土岛” Large “Soil Island” A58.00a34.52c7.40b0.07a
B小“土岛” Small “Soil Island” B41.57b53.42a4.99b0.00a
B中“土岛” Middle “Soil Island” B33.95c57.86a7.90a0.27a
B大“土岛” Large “Soil Island” B50.50a45.98b3.51b0.00a
C小“土岛” Small “Soil Island” C36.81c58.22a4.97a0.00a
C中“土岛” Middle “Soil Island” C42.33b53.23a4.44a0.00a
C大“土岛” Large “Soil Island” C54.63a43.74b1.62b0.00a
>20~40A小“土岛” Small “Soil Island” A45.55b40.03b14.40a0.01a
A中“土岛” Middle “Soil Island” A39.39b52.01a8.61b0.00a
A大“土岛” Large “Soil Island” A54.70a37.66b7.64b0.00a
B小“土岛” Small “Soil Island” B41.27b54.39b4.33b0.00a
B中“土岛” Middle “Soil Island” B33.18c58.77a8.01a0.03a
B大“土岛” Large “Soil Island” B48.46a47.58c3.94b0.00a
C小“土岛” Small “Soil Island” C30.02c64.59a5.39a0.00a
C中“土岛” Middle “Soil Island” C36.92b58.80b4.28b0.00a
C大“土岛” Large “Soil Island” C49.24a48.19c2.57c0.00a
表3  各“土岛”的土壤粒径分布
样地 Plot土层 Soil layer/cm
0~10>10~20>20~40
A小“土岛” Small “Soil Island” A4.59a5.38a5.15a
A中“土岛” Middle “Soil Island” A5.43a5.14a4.17a
A大“土岛” Large “Soil Island” A6.14a5.48a4.07a
B小“土岛” Small “Soil Island” B2.98ab2.64a1.89a
B中“土岛” Middle “Soil Island” B2.22b2.99a2.19a
B大“土岛” Large “Soil Island” B4.52a4.12a3.67a
C小“土岛” Small “Soil Island” C4.99ab4.97ab3.96a
C中“土岛” Middle “Soil Island” C3.07b3.33b2.44a
C大“土岛” Large “Soil Island” C6.82a6.15a4.54a
表4  各“土岛”的土壤有机碳质量分数
1 CONDITR, ASHTONP S, BAKERP, et al. Spatial patterns in the distribution of tropical tree species. Science, 2000,288(5470):1414-1418.
2 赵成章,任珩,盛亚萍,等.不同高寒退化草地阿尔泰针茅种群的小尺度点格局.生态学报,2011,31(21):6388-6395.
ZHAOC Z, RENH, SHENGY P, et al. Fine-scale spatial point patterns of Stipa krylovii population in different Alpine degraded grasslands. Acta Ecologica Sinica, 2011,31(21):6388-6395. (in Chinese with English abstract)
3 PHILLIPSD L, MACMAHONJ A. Competition and spacing patterns in desert shrubs. Journal of Ecology, 1981,69(1):97-115.
4 KENKELN C. Pattern of self-thinning in Jack pine: testing the random mortality hypothesis. Ecology, 1988,69(4):1017-1024.
5 高福元.高寒退化草地甘肃臭草种群空间分布格局对土壤水分的响应.兰州:西北师范大学,2012:16-29.
GAOF Y. A study on Melica przewalskyi population spatial pattern and response to soil moisture in degraded Alpine grassland. Lanzhou: Northwest Normal University, 2012:16-29. (in Chinese with English abstract)
6 孙世贤,卫智军,吴新宏,等.不同放牧强度季节调控下荒漠草原主要植物种群点格局及空间关联性.生态学报,2016,36(23):7570-7579.
SUNS X, WEIZ J, WUX H, et al. Point pattern and spatial association of primary plant populations in the seasonal regulation of grazing intensity in desert grassland. Acta Ecologica Sinica, 2016,36(23):7570-7579. (in Chinese with English abstract)
7 崔强.毛乌素沙地不同生境条件下油蒿群落格局分析研究.北京:北京林业大学,2012:117-122.
CUIQ. Study on spatial pattern of Artemisia ordosica communities in different habitats in Mu Us sandy land. Beijing: Beijing Forestry University, 2012:117-122. (in Chinese with English abstract)
8 赵成章,高福元,盛亚萍,等.狼毒种群小尺度空间分布格局及空间关联性研究.干旱区地理,2011,34(3):492-498.
ZHAOC Z, GAOF Y, SHENGY P, et al. Fine scale spatial distribution and spatial association of Stellera chamaejasme population. Arid Land Geography, 2011,34(3):492-498. (in Chinese with English abstract)
9 任珩,赵成章,高福元,等.退化草地阿尔泰针茅生殖株丛与非生殖株丛的空间格局.生态学报,2012,32(21):6909-6916.
RENH, ZHAOC Z, GAOF Y, et al. Spatial pattern of sexual plants and vegetative plants of Stipa krylovii population in Alpine degraded grassland. Acta Ecologica Sinica, 2012,32(21):6909-6916. (in Chinese with English abstract)
10 章佳晨.毛乌素沙地不同固定阶段油蒿种群空间格局分析.北京:北京林业大学,2015:20-22.
ZHANGJ C. Spatial pattern of Artemisia ordosica population at different stages of dunes in the Mu Us Desert. Beijing: Beijing Forestry University, 2015:20-22. (in Chinese with English abstract)
11 赵成章,任珩.退化草地阿尔泰针茅与狼毒种群的小尺度种间空间关联.生态学报,2011,31(20):6080-6087.
ZHAOC Z, RENH. Fine-scale spatial associations of Stipa krylovii and Stellera chamaejasme population in Alpine degraded grassland. Acta Ecologica Sinica, 2011,31(20):6080-6087. (in Chinese with English abstract)
12 赵成章,任珩.退化草地阿尔泰针茅种群个体空间格局及关联性.生态学报,2012,32(22):6946-6954.
ZHAOC Z, RENH. Individual spatial pattern and spatial association of Stipa krylovii population in Alpine degraded grassland. Acta Ecologica Sinica, 2012,32(22):6946-6954. (in Chinese with English abstract)
13 尤海舟,贾成,樊华,等.格局分析的最新方法:点格局分析.四川林业科技,2009,30(6):106-110.
YOUH Z, JIAC, FANH, et al. The latest method of pattern analysis: spatial point pattern analysis. Journal of Sichuan Forestry Science and Technology, 2009,30(6):106-110. (in Chinese with English abstract)
14 梁继业.沙漠-河岸过渡带白刺沙堆个体特征及其空间分布格局.北京:中国林业科学研究院,2007:18-20.
LIANGJ Y. The individual characteristics of Nitraria tangutorum sand mounds and their spatial distribution patterns in desert-riverside ecotone. Beijing: Chinese Academy of Forestry, 2007:18-20. (in Chinese with English abstract)
15 张明娟,刘茂松,徐驰,等.不同密度条件下芨芨草空间格局对环境胁迫的响应.生态学报,2012,32(2):595-604.
ZHANGM J, LIUM S, XUC, et al. Spatial pattern responses of Achnatherum splendens to environmental stress in different density levels. Acta Ecologica Sinica, 2012,32(2):595-604. (in Chinese with English abstract)
16 白春利,刘永志,王明玖,等.氮素和水分添加对荒漠草原短花针茅氮磷特征的影响.草业学报,2016,25(3):251-256.
BAIC L, LIUY Z, WANGM J, et al. Effects of nitrogen and water addition on herbage N and P concentrations of Stipa breviflora in a desert steppe grassland. Acta Prataculturae Sinica, 2016,25(3):251-256. (in Chinese with English abstract)
17 陈世鐄,张昊.短花针茅的生态生物学特性的研究.草原与草业,1991(4):38-41.
CHENS H, ZHANGH. Study on the ecological biological characteristics of Stipa breviflora. Grassland and Prataculture, 1991(4):38-41. (in Chinese)
18 吕晓敏,王玉辉,周广胜,等.温度与降水协同作用对短花针茅生物量及其分配的影响.生态学报,2015,35(3):752-760.
LüX M, WANGY H, ZHOUG S, et al. Interactive effects of changing precipitation and elevated temperatures on plant biomass and its allocation of Stipa breviflora. Acta Ecologica Sinica, 2015,35(3):752-760. (in Chinese with English abstract)
19 杨静,朱桂林,高国荣,等.放牧制度对短花针茅草原主要植物种群繁殖特征的影响.干旱区资源与环境,2001,15(5):112-116.
YANGJ, ZHUG L, GAOG R, et al. Effects of grazing systems on the reproductive feature of key plant population in Stipa breviflora steppe. Journal of Arid Land Resources and Environment, 2001,15(5):112-116. (in Chinese with English abstract)
20 秦洁,韩国栋,乔江,等.内蒙古不同草地类型针茅属植物对放牧强度和气候因子的响应.生态学杂志,2016,35(8):2066-2073.
QINJ, HANG D, QIAOJ, et al. Response of Stipa to grazing intensity and climate factors in different grasslands of Inner Mongolia. Chinese Journal of Ecology, 2016,35(8):2066-2073. (in Chinese with English abstract)
21 GYLLENBERGM, HANSKII. Habitat deterioration, habitat destruction, and metapopulation persistence in a heterogenous landscape. Theoretical Population Biology, 1997,52(3):198-215.
22 SHURINJ B, ALLENE G. Effects of competition, predation, and dispersal on species richness at local and regional scales. American Naturalist, 2001,158(6):624-637.
23 DEVICTORV, JULLIARDR, JIGUETF. Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos, 2008,117(4):507-514.
24 任珩.高寒退化草地西北针茅种群空间分布格局及关联性研究.兰州:西北师范大学,2012:13-17.
RENH. Study on spatial distribution pattern and spatial association of Stipa krylovii population in Alpine degraded grassland. Lanzhou: Northwest Normal University, 2012:13-17. (in Chinese with English abstract)
25 鲍士旦.土壤农化分析.北京:中国农业出版社,2000:11-13.
BAOS D. Soil Agricultural Chemistry Analysis. Beijing: China Agriculture Press, 2000:11-13. (in Chinese)
26 RIPLEYB D. Modeling spatial patterns. Journal of the Royal Statistical Society, 1977,1(39):172-212.
27 HAASEP. Spatial pattern analysis in ecology based on Ripley’s K-function: introduction and methods of edge correction. Journal of Vegetation Science, 1995,6(4):575-582.
28 MANLYB F. Randomization and Monte Carlo methods in biology//MANLY B F. Randomization, Bootstrap and Monte Carlo Methods in Biology. London, UK: Chapman & hall, 1997:856.
29 刘振国,李镇清.不同放牧强度下冷蒿种群小尺度空间格局.生态学报,2004,24(2):227-234.
LIUZ G, LIZ Q. Fine-scale spatial pattern of Artemisia frigida population under different grazing intensities. Acta Ecologica Sinica, 2004,24(2):227-234. (in Chinese with English abstract)
30 BROWNJ R, STUTHJ W. How herbivory affects grazing tolerant and sensitive grasses in a central Texas grassland: integrating plant response across hierarchical levels. Oikos, 1993,67(2):291-297.
31 NOBELP S. Root distribution and seasonal production in the northwestern Sonoran Desert for a C3 subshrub, a C4 bunchgrass, and a CAM leaf succulent. American Journal of Botany, 1997,84(7):949-955.
32 PUEYOY, MORET-FERNáNDEZD, SAIZH, et al. Relationships between plant spatial patterns, water infiltration capacity, and plant community composition in semi-arid Mediterranean ecosystems along stress gradients. Ecosystems, 2013,16(3):452-466.
33 刘文亭,王天乐,张爽,等.放牧对短花针茅荒漠草原建群种与土壤团聚体特征的影响.生态环境学报,2017,26(6):978-984.
LIUW T, WANGT L, ZHANGS, et al. Effects of grazing on edificators and soil aggregate characteristics in Stipa breviflora desert steppe. Ecology and Environmental Sciences, 2017,26(6):978-984. (in Chinese with English abstract)
34 徐连秀.短花针茅荒漠草原植物群落空间分布格局研究.呼和浩特:内蒙古农业大学,2008:30-43.
XUL X. The Research of spatial distribution patterns in Stipa breviflora desert steppe. Hohhot: Inner Mongolia Agricultural University, 2008:30-43. (in Chinese with English abstract)
35 贾晓红,李新荣,陈应武.腾格里沙漠东南缘白刺灌丛地土壤性状的特征.干旱区地理,2007,30(4):557-564.
JIAX H, LIX R, CHENY W. Soil properties of Nitraria land in southeastern Tengger Desert. Arid Land Geography, 2007,30(4):557-564. (in Chinese with English abstract)
36 熊小刚,韩兴国,陈全胜.干旱和半干旱生态系统中的沃岛效应//李承森.植物科学进展.北京:高等教育出版社,2007:118-156.
XIONGX G, HANX G, CHENQ S. Island effect in arid and semi-arid ecosystems//LI C S. Advances in Plant Science. Beijing: Higher Education Press, 2007:118-156. (in Chinese)
37 任珩,赵成章,安丽涓.基于Ripley的K(r)函数的“毒杂草”型退化草地狼毒与西北针茅种群空间分布格局.干旱区资源与环境,2015,29(1):59-64.
RENH, ZHAOC Z, ANL J. Spatial point patterns of Stellera chamaejasme and Stipa krylovii populations in degraded grassland of noxious and miscellaneous types based on Ripley’s K(r) function. Journal of Arid Land Resources & Environment, 2015,29(1):59-64. (in Chinese with English abstract)
38 杨洪晓,张金屯,吴波,等.毛乌素沙地油蒿种群点格局分析.植物生态学报,2006,30(4):563-570.
YANGH X, ZHANGJ T, WUB, et al. Point pattern analysis of Artemisia ordosica population in the Mu Us sandy land. Journal of Plant Ecology, 2006,30(4):563-570. (in Chinese with English abstract)
39 邬建国.景观生态学:概念与理论.生态学杂志,2000,19(1):42-52.
WUJ G. Landscape ecology: concepts and theories. Chinese Journal of Ecology, 2000,19(1):42-52. (in Chinese with English abstract)
40 SOULéM E, SIMBERLOFFD. What do genetics and ecology tell us about the design of nature reserves. Biological Conservation, 1986,35(1):19-40.
41 高增祥,陈尚,李典谟,等.岛屿生物地理学与集合种群理论的本质与渊源.生态学报,2007,27(1):304-313.
GAOZ X, CHENS, LID M, et al. Origin and essence of island biogeography and metapopulation theory. Acta Ecologica Sinica, 2007,27(1):304-313. (in Chinese with English abstract)
[1] 何霜,李发永,刘子闻,王志荣,吴珊珊,张天昱,曹玉成,梁新强. 胶体磷在3种类型土壤中的迁移阻滞[J]. 浙江大学学报(农业与生命科学版), 2019, 45(2): 205-210.
[2] 章明奎,姚玉才,邱志腾,毛霞丽,杨良觎. 中国南方碳酸盐岩发育土壤的成土特点与系统分类[J]. 浙江大学学报(农业与生命科学版), 2019, 45(1): 54-65.
[3] 李伟成,杨慧敏,高贵宾,温星,盛海燕. 覆盖对中小径级毛竹林地土壤细菌群落的影响[J]. 浙江大学学报(农业与生命科学版), 2018, 44(1): 49-58.
[4] 李丹,梁新强,吴嘉平. 水库型饮用水源地水环境模拟与预测[J]. 浙江大学学报(农业与生命科学版), 2018, 44(1): 75-88.
[5] 童心,胡柏杨,陈兴财,张雪莲,赵永志,谷成刚,李艳霞. 类固醇雌激素的环境暴露及其迁移转化[J]. 浙江大学学报(农业与生命科学版), 2017, 43(6): 734-746.
[6] 薛南冬,刘寒冰,杨兵,苏献伟,王冬琦. 毒死蜱土壤环境行为研究进展[J]. 浙江大学学报(农业与生命科学版), 2017, 43(6): 713-726.
[7] 孙扬,徐会娟,李晓晶,李永涛,赵丽霞. 二氯喹啉酸对农田生态系统的影响及其微生物降解研究进展[J]. 浙江大学学报(农业与生命科学版), 2017, 43(6): 727-733.
[8] 刘晨,郭佳,赵敏,钟斌,郭华,侯淑贞,徐炜杰,杨芸,王任远,叶正钱,柳丹. 毛竹幼苗与伴矿景天间作对铜、镉、锌转运积累的影响[J]. 浙江大学学报(农业与生命科学版), 2017, 43(5): 615-622.
[9] 李戌清,张雅,田忠玲,吴根良. 茄子连作与轮作土壤养分、酶活性及微生物群落结构差异分析[J]. 浙江大学学报(农业与生命科学版), 2017, 43(5): 561-569.
[10] 李晴晴,鲁珊珊,张红,杨艳,肖家欣. 乌饭树和蓝莓对不同土壤pH值的生理反应[J]. 浙江大学学报(农业与生命科学版), 2017, 43(4): 469-475.
[11] 周慧芳,王京文,孙吉林,李丹,张奇春. 耐镉菌联合植物吸收对土壤重金属镉污染的修复[J]. 浙江大学学报(农业与生命科学版), 2017, 43(3): 341-349.
[12] 王兴, 宋乃平, 杨新国. 基于“3圈”模式的草地植物群落分布及多样性对环境因子的响应[J]. 浙江大学学报(农业与生命科学版), 2016, 42(6): 747-759.
[13] 孔樟良. 浙西北茶园土壤固碳能力及其不同形态有机碳的积累特点[J]. 浙江大学学报(农业与生命科学版), 2016, 42(2): 209-219.
[14] 卜晓燕, 米文宝, 许浩, 张学艺, 米楠, 宋永永. 宁夏平原不同类型湿地土壤碳氮磷含量及其生态化学计量学特征[J]. 浙江大学学报(农业与生命科学版), 2016, 42(1): 107-118.
[15] 万年鑫, 郑顺林, 周少猛, 张琴, 彭彬, 袁继超. 薯玉轮作对马铃薯根区土壤养分及酶活效应分析[J]. 浙江大学学报(农业与生命科学版), 2016, 42(1): 74-80.